import gradio as gr import torch from peft import PeftModel, PeftConfig from transformers import AutoTokenizer ref_model = AutoModelForCausalLM.from_pretrained("EleutherAI/pythia-70m-deduped-v0", torch_dtype=torch.bfloat16) peft_model_id = "w601sxs/pythia-70m-instruct-orca-chkpt-64000" config = PeftConfig.from_pretrained(peft_model_id) model = PeftModel.from_pretrained(ref_model, peft_model_id) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) model.eval() def predict(text): inputs = tokenizer(prompt, return_tensors="pt") with torch.no_grad(): outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10) out_text = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0]) return out_text demo = gr.Interface( fn=predict, inputs='text', outputs='text', ) demo.launch()