File size: 5,107 Bytes
e547b24 a44fbc4 e547b24 4d6cbec 2717910 e547b24 2717910 4d6cbec d7729a9 6f5a32e e547b24 4d6cbec e547b24 6f5a32e 2717910 4d6cbec e547b24 4d6cbec 2717910 4d6cbec e547b24 4d6cbec e547b24 2717910 e547b24 2717910 e547b24 4d6cbec e547b24 6f5a32e e547b24 2717910 e547b24 4d6cbec e547b24 02f8cfa 4d6cbec 02f8cfa 73f7edc e547b24 4d6cbec 02f8cfa 4d6cbec d7729a9 2717910 4d6cbec 02f8cfa 4d6cbec 02f8cfa d7729a9 2717910 4d6cbec 02f8cfa bc84ac0 4d6cbec 02f8cfa 4d6cbec e547b24 4d6cbec 02f8cfa 2717910 4d6cbec 02f8cfa 2717910 4d6cbec e547b24 4d6cbec 2717910 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import gradio as gr
import requests
import io
import random
import os
import time
from PIL import Image
from deep_translator import GoogleTranslator
import json
# Project by Nymbo
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-3.5-large"
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100
# Function to query the API and return the generated image
def query(prompt, negative_prompt, steps=35, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=1024, height=1024):
if not prompt:
raise gr.Error("Prompt cannot be empty.")
key = random.randint(0, 999)
# Translate the prompt from Russian to English if necessary
prompt = GoogleTranslator(source='my', target='en').translate(prompt)
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
# Add some extra flair to the prompt
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
print(f'\033[1mGeneration {key}:\033[0m {prompt}')
# Prepare the payload for the API call, including width and height
payload = {
"inputs": prompt,
"parameters": {
"negative_prompt": negative_prompt,
"steps": steps,
"cfg_scale": cfg_scale,
"sampler": sampler,
"seed": seed if seed != -1 else random.randint(1, 1000000000),
"strength": strength,
"width": width,
"height": height
}
}
# Send the request to the API and handle the response
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
if response.status_code != 200:
error_message = f"Error: Failed to get image. Response status: {response.status_code}"
if response.status_code == 503:
error_message += " - The model is being loaded"
raise gr.Error(error_message)
try:
# Convert the response content into an image
image_bytes = response.content
image = Image.open(io.BytesIO(image_bytes))
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
return image
except Exception as e:
raise gr.Error(f"Error when trying to open the image: {e}")
# CSS to style the app
css = """
#app-container {
max-width: 800px;
margin-left: auto;
margin-right: auto;
}
"""
# Build the Gradio UI with Blocks
with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
# Add a title to the app
gr.HTML("<center><h1>Walone AI Image Pro Large</h1></center>")
# Container for all the UI elements
with gr.Column(elem_id="app-container"):
# Add a text input for the main prompt
with gr.Row():
with gr.Column(elem_id="prompt-container"):
with gr.Row():
text_prompt = gr.Textbox(label="Prompt", placeholder="Prompt စာသားရေးပါ", lines=2, elem_id="prompt-text-input")
# Accordion for advanced settings
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
with gr.Row():
width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1216, step=32)
height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1216, step=32)
steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) # Setting the seed to -1 will make it random
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
# Add a button to trigger the image generation
with gr.Row():
text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
# Image output area to display the generated image
with gr.Row():
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
# Bind the button to the query function with the added width and height inputs
text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=image_output)
# Launch the Gradio app
app.launch(show_api=False, share=False)
|