File size: 4,297 Bytes
e547b24
 
 
 
 
 
 
 
 
 
 
 
db53b0f
e547b24
 
 
 
b2796f9
 
8b1e228
e547b24
 
b2796f9
d7729a9
6f5a32e
e547b24
 
6f5a32e
b2796f9
e547b24
 
b2796f9
 
 
 
 
 
 
 
 
 
e547b24
 
 
 
8b1e228
 
e547b24
8b1e228
 
b2796f9
e547b24
 
 
6f5a32e
e547b24
 
8b1e228
 
e547b24
 
02f8cfa
8b1e228
02f8cfa
 
73f7edc
e547b24
 
02f8cfa
8b1e228
02f8cfa
 
 
 
8b1e228
02f8cfa
8b1e228
bc84ac0
8b1e228
02f8cfa
4d6cbec
8b1e228
 
b2796f9
 
e547b24
02f8cfa
 
 
 
2717910
b2796f9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import gradio as gr
import requests
import io
import random
import os
import time
from PIL import Image
from deep_translator import GoogleTranslator
import json

# Project by Nymbo

API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100

def query(prompt, negative_prompt, steps, cfg_scale, sampler, seed, strength, width, height):
    if prompt == "" or prompt is None:
        return None

    key = random.randint(0, 999)

    prompt = GoogleTranslator(source='my', target='en').translate(prompt)
    print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')

    prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
    print(f'\033[1mGeneration {key}:\033[0m {prompt}')

    payload = {
        "inputs": prompt,
        "parameters": {
            "negative_prompt": negative_prompt,
            "steps": steps,
            "cfg_scale": cfg_scale,
            "sampler": sampler,
            "seed": seed if seed != -1 else random.randint(1, 1000000000),
            "strength": strength,
            "width": width,
            "height": height
        }
    }

    response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
    if response.status_code != 200:
        print(f"Error: Failed to get image. Response status: {response.status_code}")
        print(f"Response content: {response.text}")
        if response.status_code == 503:
            raise gr.Error(f"{response.status_code} : The model is being loaded")
        raise gr.Error(f"{response.status_code}")

    try:
        image_bytes = response.content
        image = Image.open(io.BytesIO(image_bytes))
        print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
        return image
    except Exception as e:
        print(f"Error when trying to open the image: {e}")
        return None

css = """
#app-container {
    max-width: 600px;
    margin-left: auto;
    margin-right: auto;
}
"""

with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
    gr.HTML("<center><h1>Walone AI Image Stable</h1></center>")
    with gr.Column(elem_id="app-container"):
        with gr.Row():
            with gr.Column(elem_id="prompt-container"):
                with gr.Row():
                    text_prompt = gr.Textbox(label="Prompt ရေးရန်", placeholder="ဒီနေရာမှာ prompt ရေးပါ", lines=2, elem_id="prompt-text-input")
                with gr.Row():
                    with gr.Accordion("အဆင့်မြင့် Settings", open=False):
                        negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
                        steps = gr.Slider(label="Sampling steps", value=4, minimum=1, maximum=100, step=1)
                        cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
                        method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
                        strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
                        seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
                        width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=64)
                        height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=64)

        with gr.Row():
            text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
        with gr.Row():
            image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")

        text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=image_output)

app.launch(show_api=False, share=True)