waloneai's picture
Update app.py
43a4f7e verified
import os
import shutil
import uuid
import argparse
from pathlib import Path
from concurrent.futures import ThreadPoolExecutor
from huggingface_hub import snapshot_download
import gradio as gr
from gradio_client import Client, handle_file
from mutagen.mp3 import MP3
from pydub import AudioSegment
from PIL import Image
import ffmpeg
# Set working directory
os.chdir(os.path.dirname(os.path.abspath(__file__)))
from scripts.inference import inference_process
# Constants
AUDIO_MAX_DURATION = 4000
is_shared_ui = "fffiloni/tts-hallo-talking-portrait" in os.environ.get('SPACE_ID', '')
hallo_dir = snapshot_download(repo_id="fudan-generative-ai/hallo", local_dir="pretrained_models")
# Utility Functions
def is_mp3(file_path):
try:
MP3(file_path)
return True
except Exception:
return False
def convert_mp3_to_wav(mp3_file_path, wav_file_path):
audio = AudioSegment.from_mp3(mp3_file_path)
audio.export(wav_file_path, format="wav")
return wav_file_path
def trim_audio(file_path, output_path, max_duration):
audio = AudioSegment.from_wav(file_path)
if len(audio) > max_duration:
audio = audio[:max_duration]
audio.export(output_path, format="wav")
return output_path
def add_silence_to_wav(wav_file_path, duration_s=1):
audio = AudioSegment.from_wav(wav_file_path)
silence = AudioSegment.silent(duration=duration_s * 1000)
(audio + silence).export(wav_file_path, format="wav")
return wav_file_path
def check_mp3(file_path):
if is_mp3(file_path):
unique_id = uuid.uuid4()
wav_file_path = f"{os.path.splitext(file_path)[0]}-{unique_id}.wav"
converted_audio = convert_mp3_to_wav(file_path, wav_file_path)
print(f"File converted to {wav_file_path}")
return converted_audio, gr.update(value=converted_audio, visible=True)
else:
print("The file is not an MP3 file.")
return file_path, gr.update(value=file_path, visible=True)
def check_and_convert_webp_to_png(input_path, output_path):
try:
with Image.open(input_path) as img:
if img.format == 'WEBP':
img.save(output_path, 'PNG')
print(f"Converted {input_path} to {output_path}")
return output_path
else:
print(f"The file {input_path} is not in WebP format.")
return input_path
except IOError:
print(f"Cannot open {input_path}. The file might not exist or is not an image.")
def convert_user_uploaded_webp(input_path):
unique_id = uuid.uuid4()
output_file = f"converted_to_png_portrait-{unique_id}.png"
ready_png = check_and_convert_webp_to_png(input_path, output_file)
print(f"PORTRAIT PNG FILE: {ready_png}")
return ready_png
def clear_audio_elms():
return gr.update(value=None, visible=False)
def change_video_codec(input_file, output_file, codec='libx264', audio_codec='aac'):
try:
ffmpeg.input(input_file).output(output_file, vcodec=codec, acodec=audio_codec).run(overwrite_output=True)
print(f'Successfully changed codec of {input_file} and saved as {output_file}')
except ffmpeg.Error as e:
print(f'Error occurred: {e.stderr.decode()}')
# Gradio APIs
def generate_portrait(prompt_image):
if not prompt_image:
raise gr.Error("Can't generate a portrait without a prompt!")
try:
client = Client("ByteDance/SDXL-Lightning")
except Exception:
raise gr.Error("ByteDance/SDXL-Lightning space's API might not be ready, please wait, or upload an image instead.")
result = client.predict(prompt=prompt_image, ckpt="4-Step", api_name="/generate_image")
return convert_user_uploaded_webp(result)
def generate_voice_with_parler(prompt_audio, voice_description):
if not prompt_audio:
raise gr.Error("Can't generate a voice without text to synthesize!")
if not voice_description:
gr.Info("For better control, you may want to provide a voice character description next time.", duration=10, visible=True)
try:
client = Client("parler-tts/parler_tts_mini")
except Exception:
raise gr.Error("parler-tts/parler_tts_mini space's API might not be ready, please wait, or upload an audio instead.")
result = client.predict(text=prompt_audio, description=voice_description, api_name="/gen_tts")
return result, gr.update(value=result, visible=True)
def get_whisperspeech(prompt_audio_whisperspeech, audio_to_clone):
try:
client = Client("collabora/WhisperSpeech")
except Exception:
raise gr.Error("collabora/WhisperSpeech space's API might not be ready, please wait, or upload an audio instead.")
result = client.predict(multilingual_text=prompt_audio_whisperspeech, speaker_audio=handle_file(audio_to_clone), speaker_url="", cps=14, api_name="/whisper_speech_demo")
return result, gr.update(value=result, visible=True)
def get_maskGCT_TTS(prompt_audio_maskGCT, audio_to_clone):
try:
client = Client("amphion/maskgct")
except Exception:
raise gr.Error("amphion/maskgct space's API might not be ready, please wait, or upload an audio instead.")
result = client.predict(prompt_wav=handle_file(audio_to_clone), target_text=prompt_audio_maskGCT, target_len=-1, n_timesteps=25, api_name="/predict")
return result, gr.update(value=result, visible=True)
# Talking Portrait Generation
def run_hallo(source_image, driving_audio, progress=gr.Progress(track_tqdm=True)):
unique_id = uuid.uuid4()
args = argparse.Namespace(
config='configs/inference/default.yaml',
source_image=source_image,
driving_audio=driving_audio,
output=f'output-{unique_id}.mp4',
pose_weight=1.0,
face_weight=1.0,
lip_weight=1.0,
face_expand_ratio=1.2,
checkpoint=None
)
inference_process(args)
return f'output-{unique_id}.mp4'
def generate_talking_portrait(portrait, voice, progress=gr.Progress(track_tqdm=True)):
if not portrait:
raise gr.Error("Please provide a portrait to animate.")
if not voice:
raise gr.Error("Please provide audio (4 seconds max).")
if is_shared_ui:
unique_id = uuid.uuid4()
trimmed_output_file = f"-{unique_id}.wav"
voice = trim_audio(voice, trimmed_output_file, AUDIO_MAX_DURATION)
ready_audio = add_silence_to_wav(voice)
print(f"1 second of silence added to {voice}")
talking_portrait_vid = run_hallo(portrait, ready_audio)
final_output_file = f"converted_{talking_portrait_vid}"
change_video_codec(talking_portrait_vid, final_output_file)
return final_output_file
# Gradio Interface
css = '''
/* Your CSS here */
'''
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# TTS x Hallo Talking Portrait Generator")
with gr.Row(elem_id="column-names"):
gr.Markdown("## 1. Load Portrait")
gr.Markdown("## 2. Load Voice")
gr.Markdown("## 3. Result")
with gr.Group(elem_id="main-group"):
with gr.Row():
with gr.Column():
portrait = gr.Image(sources=["upload"], type="filepath", format="png", elem_id="image-block")
prompt_image = gr.Textbox(label="Generate image", lines=2, max_lines=2)
gen_image_btn = gr.Button("Generate portrait (optional)")
with gr.Column(elem_id="audio-column"):
voice = gr.Audio(type="filepath", elem_id="audio-block")
preprocess_audio_file = gr.File(visible=False)
with gr.Tab("Parler TTS", elem_id="parler-tab"):
prompt_audio = gr.Textbox(label="Text to synthesize", lines=3, max_lines=3, elem_id="text-synth")
voice_description = gr.Textbox(label="Voice description", lines=3, max_lines=3, elem_id="voice-desc")
gen_voice_btn = gr.Button("Generate voice (optional)")
with gr.Tab("WhisperSpeech", elem_id="whisperspeech-tab"):
prompt_audio_whisperspeech = gr.Textbox(label="Text to synthesize", lines=2, max_lines=2, elem_id="text-synth-wsp")
audio_to_clone = gr.Audio(label="Voice to clone", type="filepath", elem_id="audio-clone-elm")
gen_wsp_voice_btn = gr.Button("Generate voice clone (optional)")
with gr.Tab("MaskGCT TTS", elem_id="maskGCT-tab"):
prompt_audio_maskGCT = gr.Textbox(label="Text to synthesize", lines=2, max_lines=2, elem_id="text-synth-maskGCT")
audio_to_clone_maskGCT = gr.Audio(label="Voice to clone", type="filepath", elem_id="audio-clone-elm-maskGCT")
gen_maskGCT_voice_btn = gr.Button("Generate voice clone (optional)")
with gr.Column(elem_id="result-column"):
result = gr.Video(elem_id="video-block")
submit_btn = gr.Button("Go talking Portrait !", elem_id="main-submit")
with gr.Row(elem_id="pro-tips"):
gr.Markdown("# Hallo Pro Tips:")
gr.Markdown("# TTS Pro Tips:")
portrait.upload(convert_user_uploaded_webp, inputs=[portrait], outputs=[portrait], queue=False, show_api=False)
voice.upload(check_mp3, inputs=[voice], outputs=[voice, preprocess_audio_file], queue=False, show_api=False)
voice.clear(clear_audio_elms, inputs=None, outputs=[preprocess_audio_file], queue=False, show_api=False)
gen_image_btn.click(generate_portrait, inputs=[prompt_image], outputs=[portrait], queue=False, show_api=False)
gen_voice_btn.click(generate_voice_with_parler, inputs=[prompt_audio, voice_description], outputs=[voice, preprocess_audio_file], queue=False, show_api=False)
gen_wsp_voice_btn.click(get_whisperspeech, inputs=[prompt_audio_whisperspeech, audio_to_clone], outputs=[voice, preprocess_audio_file], queue=False, show_api=False)
gen_maskGCT_voice_btn.click(get_maskGCT_TTS, inputs=[prompt_audio_maskGCT, audio_to_clone_maskGCT], outputs=[voice, preprocess_audio_file], queue=False, show_api=False)
submit_btn.click(generate_talking_portrait, inputs=[portrait, voice], outputs=[result], show_api=False)
demo.queue(max_size=2).launch(show_error=True, show_api=False)