Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig | |
# Load model and tokenizer | |
model_name = 'gpt2-large' | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) | |
# Streamlit UI | |
st.title("Blog Post Generator") | |
text = st.text_area("Enter the starting text for your blog post:") | |
# Configuration for generation | |
generation_config = GenerationConfig(max_new_tokens=200, do_sample=True, temperature=0.7) | |
if text: | |
try: | |
# Encode input | |
inputs_encoded = tokenizer(text, return_tensors='pt') | |
# Generate output | |
with torch.no_grad(): | |
model_output = model.generate(inputs_encoded["input_ids"], generation_config=generation_config)[0] | |
# Decode output | |
output = tokenizer.decode(model_output, skip_special_tokens=True) | |
# Display result | |
st.write("Generated Blog Post:") | |
st.write(output) | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |