Spaces:
Running
Running
File size: 24,330 Bytes
4947b21 dd32433 5482ce2 c216cfa 4947b21 10719a6 c216cfa 4947b21 f47cd37 c216cfa de0d9d3 10719a6 de0d9d3 c216cfa 4947b21 e91526e 756c707 4947b21 9f45ed5 8ccaac3 001f645 8ccaac3 4947b21 b0f1bc1 4947b21 fb641fa 4947b21 fb641fa 4947b21 fb641fa 4947b21 f71b612 4947b21 f71b612 4947b21 c216cfa de0d9d3 4947b21 c216cfa 4947b21 c216cfa 4947b21 c216cfa 4947b21 f71b612 4947b21 fb641fa 4947b21 73214f2 4947b21 f71b612 4947b21 f71b612 4947b21 f71b612 4947b21 f71b612 4947b21 f71b612 4947b21 f71b612 4947b21 f71b612 4947b21 f71b612 4947b21 f71b612 4947b21 f71b612 4947b21 fb641fa 4947b21 2eeebba c216cfa e5e5ecc f99fae3 5f9c583 e5e5ecc c216cfa 2eeebba c216cfa 2eeebba c216cfa 4947b21 10719a6 4947b21 10719a6 c216cfa 4947b21 c216cfa 3776898 c216cfa 4947b21 f71b612 4947b21 f71b612 4947b21 f71b612 4947b21 f71b612 4947b21 f71b612 4947b21 b31ef15 4947b21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
import pandas as pd
from PIL import Image
import streamlit as st
import cv2
from streamlit_drawable_canvas import st_canvas
import torch
from diffusers import AutoPipelineForInpainting
import numpy as np
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document
from sentence_transformers import SentenceTransformer,util
from streamlit_image_select import image_select
import os
import fitz
import PyPDF2
import requests
from streamlit_navigation_bar import st_navbar
from langchain_community.llms import Ollama
import base64
from io import BytesIO
from PIL import Image, ImageDraw
from streamlit_lottie import st_lottie
from streamlit_option_menu import option_menu
import json
from transformers import pipeline
import streamlit as st
from streamlit_modal import Modal
import streamlit.components.v1 as components
from datetime import datetime
from streamlit_js_eval import streamlit_js_eval
from streamlit_pdf_viewer import pdf_viewer
def consume_llm_api(prompt):
"""
Sends a prompt to the LLM API and processes the streamed response.
"""
url = "https://wise-eagles-send.loca.lt/api/llm-response"
headers = {"Content-Type": "application/json"}
payload = {"prompt": prompt}
try:
print("Sending prompt to the LLM API...")
with requests.post(url, json=payload, headers=headers, stream=True) as response:
response.raise_for_status()
print("Response from LLM API:\n")
for line in response:
yield(line.decode('utf-8'))
# print(type(response))
# yield(response)
except requests.RequestException as e:
print(f"Error consuming API: {e}")
except Exception as e:
print(f"Unexpected error: {e}")
def send_prompt():
return "please respond according to the prompt asked below from the above context"
def image_to_base64(image_path):
with open(image_path, "rb") as img_file:
return base64.b64encode(img_file.read()).decode()
@st.cache_resource
def load_model():
pipeline_ = AutoPipelineForInpainting.from_pretrained("kandinsky-community/kandinsky-2-2-decoder-inpaint", torch_dtype=torch.float16).to("cuda")
return pipeline_
# @st.cache_resource
def prompt_improvment(pre_prompt):
enhancement="Please use details from the prompt mentioned above, focusing only what user is thinking with the prompt and also add 8k resolution. Its a request only provide image description and brief prompt no other text."
prompt = pre_prompt+"\n"+enhancement
return consume_llm_api(prompt)
def process_pdf(file):
documents = []
with open(file, "rb") as f:
reader = PyPDF2.PdfReader(f)
for page in reader.pages:
text = page.extract_text()
if text: # Ensure that the page has text
documents.append(Document(page_content=text))
return documents
def numpy_to_list(array):
current=[]
for value in array:
if isinstance(value,type(np.array([]))):
result=numpy_to_list(value)
current.append(result)
else:
current.append(int(value))
return current
@st.cache_resource
def llm_text_response():
llm = Ollama(model="llama3:latest",num_ctx=1000)
return llm.stream
def model_single_out(prompt):
pipe=load_model()
image = pipe(prompt).images[0]
return image
def model_out_put(init_image,mask_image,prompt,negative_prompt):
API_URL = "https://7716-205-196-17-124.ngrok-free.app/api/llm-response"
initial_image_base64 = numpy_to_list(np.array(init_image))
mask_image_base64 = numpy_to_list(np.array(mask_image))
payload = {
"prompt": prompt, # Replace with your desired prompt
"initial_img": initial_image_base64,
"masked_img": mask_image_base64,
"negative_prompt": negative_prompt # Replace with your negative prompt
}
response_ = requests.post(API_URL, json=payload)
response_data = response_.json()
output_image_base64 = response_data.get("img", "")
output_image=np.array(output_image_base64,dtype=np.uint8)
output_image = Image.fromarray(output_image)
# output_image.show()
return output_image
@st.cache_resource
def multimodel():
pipeline_ = pipeline("text-classification", model = "/home/user/app/model_path/")
return pipeline_
def multimodel_output(prompt):
pipeline_ = multimodel()
image = pipeline_(prompt)
return image[0]['label']
def d4_to_3d(image):
formatted_array=[]
for j in image:
neste_list=[]
for k in j:
if any([True if i>0 else False for i in k]):
neste_list.append(True)
else:
neste_list.append(False)
formatted_array.append(neste_list)
print(np.shape(formatted_array))
return np.array(formatted_array)
st.set_page_config(layout="wide")
# st.write(str(os.getcwd()))
screen_width = streamlit_js_eval(label="screen.width",js_expressions='screen.width')
screen_height = streamlit_js_eval(label="screen.height",js_expressions='screen.height')
img_selection=None
# Specify canvas parameters in application
drawing_mode = st.sidebar.selectbox(
"Drawing tool:", ("freedraw","point", "line", "rect", "circle", "transform")
)
dictionary=st.session_state
if "every_prompt_with_val" not in dictionary:
dictionary['every_prompt_with_val']=[]
if "current_image" not in dictionary:
dictionary['current_image']=[]
if "prompt_collection" not in dictionary:
dictionary['prompt_collection']=[]
if "user" not in dictionary:
dictionary['user']=None
if "current_session" not in dictionary:
dictionary['current_session']=None
if "image_movement" not in dictionary:
dictionary['image_movement']=None
stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 20)
if drawing_mode == 'point':
point_display_radius = st.sidebar.slider("Point display radius: ", 1, 25, 3)
stroke_color = '#000000'
bg_color = "#eee"
column1,column2=st.columns([0.7,0.35])
with open("/home/user/app/DataBase/datetimeRecords.json","r") as read:
dateTimeRecord=json.load(read)
with column2:
st.header("HISTORY")
tab1,tab2,tab3,tab4=st.tabs(["CHAT HISTORY","IMAGES","PROMPT IMPROVEMENT","LOGIN"])
with tab1:
if not len(dictionary['every_prompt_with_val']):
st.header("I will store all the chat for the current session")
with open("/home/user/app/lotte_animation_saver/animation_4.json") as read:
url_json=json.load(read)
st_lottie(url_json,height = 400)
else:
with st.container(height=600):
for index,prompts_ in enumerate(dictionary['every_prompt_with_val'][::-1]):
if prompts_[-1]=="@working":
if index==0:
st.write(prompts_[0].split(send_prompt())[-1].upper() if send_prompt() in prompts_[0] else prompts_[0].upper())
data_need=st.write_stream(consume_llm_api(prompts_[0]))
dictionary['every_prompt_with_val'][-1]=(prompts_[0],str(data_need))
elif isinstance(prompts_[-1],str):
show_case_text=prompts_[0].split(send_prompt())[-1].upper() if send_prompt() in prompts_[0] else prompts_[0].upper()
if index==0:
st.text_area(label=show_case_text,value=prompts_[-1],height=500,key=str(index))
else:
st.text_area(label=show_case_text,value=prompts_[-1],key=str(index))
else:
st.write(prompts_[0].upper())
with st.container(height=400):
format1,format2=st.columns([0.2,0.8])
with format1:
new_img=Image.open("/home/user/app/ALL_image_formation/image_gen.png")
st.write("<br>",unsafe_allow_html=True)
size = min(new_img.size)
mask = Image.new('L', (size, size), 0)
draw = ImageDraw.Draw(mask)
draw.ellipse((0, 0, size, size), fill=255)
image = new_img.crop((0, 0, size, size))
image.putalpha(mask)
st.image(image)
with format2:
st.write("<br>",unsafe_allow_html=True)
size = min(prompts_[-1].size)
mask = Image.new('L', (size, size), 0)
draw = ImageDraw.Draw(mask)
draw.ellipse((0, 0, size, size), fill=255)
# Crop the image to a square and apply the mask
image = prompts_[-1].crop((0, 0, size, size))
image.putalpha(mask)
st.image(image)
with tab2:
if "current_image" in dictionary and len(dictionary['current_image']):
with st.container(height=600):
dictinory_length=len(dictionary['current_image'])
img_selection = image_select(
label="",
images=dictionary['current_image'] if len(dictionary['current_image'])!=0 else None,
)
if img_selection in dictionary['current_image']:
dictionary['current_image'].remove(img_selection)
dictionary['current_image'].insert(0,img_selection)
if dictionary['image_movement']!=img_selection:
dictionary['image_movement']=img_selection
st.rerun() # st.rerun()
img_selection.save("image.png")
with open("image.png", "rb") as file:
downl=st.download_button(label="DOWNLOAD",data=file,file_name="image.png",mime="image/png")
os.remove("image.png")
else:
st.header("This section will store the updated images")
with open("/home/user/app/lotte_animation_saver/animation_1.json") as read:
url_json=json.load(read)
st_lottie(url_json,height = 400)
with tab3:
if len(dictionary['prompt_collection'])!=0:
with st.container(height=600):
prompt_selection=st.selectbox(label="Select the prompt for improvment",options=["Mention below are prompt history"]+dictionary["prompt_collection"],index=0)
if prompt_selection!="Mention below are prompt history":
generated_prompt=prompt_improvment(prompt_selection)
dictionary['generated_image_prompt'].append(generated_prompt)
st.write_stream(generated_prompt)
else:
st.header("This section will provide prompt improvement section")
with open("/home/user/app/lotte_animation_saver/animation_3.json") as read:
url_json=json.load(read)
st_lottie(url_json,height = 400)
with tab4:
# with st.container(height=600):
if not dictionary['user'] :
with st.form("my_form"):
# st.header("Please login for save your data")
with open("/home/user/app/lotte_animation_saver/animation_5.json") as read:
url_json=json.load(read)
st_lottie(url_json,height = 200)
user_id = st.text_input("user login")
password = st.text_input("password",type="password")
submitted_login = st.form_submit_button("Submit")
# Every form must have a submit button.
if submitted_login:
with open("/home/user/app/DataBase/login.json","r") as read:
login_base=json.load(read)
if user_id in login_base and login_base[user_id]==password:
dictionary['user']=user_id
st.rerun()
else:
st.error("userid or password incorrect")
st.write("working")
modal = Modal(
"Sign up",
key="demo-modal",
padding=10, # default value
max_width=600 # default value
)
open_modal = st.button("sign up")
if open_modal:
modal.open()
if modal.is_open():
with modal.container():
with st.form("my_form1"):
sign_up_column_left,sign_up_column_right=st.columns(2)
with sign_up_column_left:
with open("/home/user/app/lotte_animation_saver/animation_6.json") as read:
url_json=json.load(read)
st_lottie(url_json,height = 200)
with sign_up_column_right:
user_id = st.text_input("user login")
password = st.text_input("password",type="password")
submitted_signup = st.form_submit_button("Submit")
if submitted_signup:
with open("/home/user/app/DataBase/login.json","r") as read:
login_base=json.load(read)
if not login_base:
login_base={}
if user_id not in login_base:
login_base[user_id]=password
with open("/home/user/app/DataBase/login.json","w") as write:
json.dump(login_base,write,indent=2)
st.success("you are a part now")
dictionary['user']=user_id
modal.close()
else:
st.error("user id already exists")
else:
st.header("REPORTED ISSUES")
with st.container(height=370):
with open("/home/user/app/DataBase/datetimeRecords.json") as feedback:
temp_issue=json.load(feedback)
arranged_feedback=reversed(temp_issue['database'])
for report in arranged_feedback:
user_columns,user_feedback=st.columns([0.3,0.8])
with user_columns:
st.write(report[-1])
with user_feedback:
st.write(report[1])
feedback=st.text_area("Feedback Report and Improvement",placeholder="")
summit=st.button("submit")
if summit:
with open("/home/user/app/DataBase/datetimeRecords.json","r") as feedback_sumit:
temp_issue_submit=json.load(feedback_sumit)
if "database" not in temp_issue_submit:
temp_issue_submit["database"]=[]
temp_issue_submit["database"].append((str(datetime.now()),feedback,dictionary['user']))
with open("/home/user/app/DataBase/datetimeRecords.json","w") as feedback_sumit:
json.dump(temp_issue_submit,feedback_sumit)
# st.rerun()
bg_image = st.sidebar.file_uploader("PLEASE UPLOAD IMAGE FOR EDITING:", type=["png", "jpg"])
bg_doc = st.sidebar.file_uploader("PLEASE UPLOAD DOC FOR PPT/PDF/STORY:", type=["pdf","xlsx"])
if "bg_image" not in dictionary:
dictionary["bg_image"]=None
if img_selection and dictionary['bg_image']==bg_image:
gen_image=dictionary['current_image'][0]
else:
if bg_image:
gen_image=Image.open(bg_image)
else:
gen_image=None
with column1:
# Create a canvas component
changes,implementation,current=st.columns([0.01,0.9,0.01])
with implementation:
st.write("<br>"*5,unsafe_allow_html=True)
if bg_doc:
canvas_result=None
binary_data = bg_doc.getvalue()
binary_data = base64.b64encode(bg_doc.getvalue()).decode('utf-8')
pdf_display = F'<embed class="pdfobject" type="application/pdf" title="Embedded PDF" src="data:application/pdf;base64,{binary_data}" width={screen_width//2.07} height={screen_height//1.83} type="application/pdf">'
st.markdown(pdf_display, unsafe_allow_html=True)
pdf_display = f"""<embed
class="pdfobject"
type="application/pdf"
title="Embedded PDF"
src="data:application/pdf;base64,{binary_data}"
style="overflow: auto; width: 100%; height: 100%;">"""
st.markdown(pdf_display, unsafe_allow_html=True)
with open("temp.pdf", "wb") as f:
f.write(bg_doc.getbuffer())
# Process the uploaded PDF file
data = process_pdf("temp.pdf")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=7500, chunk_overlap=100)
chunks = text_splitter.split_documents(data)
# chunk_texts = [str(chunk.page_content) for chunk in chunks]
# print("testing",chunk_texts)
model_name = "all-MiniLM-L6-v2"
model = SentenceTransformer(model_name)
embeddings = [model.encode(str(chunk.page_content)) for chunk in chunks]
vector_store = []
for chunk, embedding in zip(chunks, embeddings):
vector_store.append((embedding, chunk.page_content) )
else:
canvas_result = st_canvas(
fill_color="rgba(255, 165, 0, 0.3)", # Fixed fill color with some opacity
stroke_width=stroke_width,
stroke_color=stroke_color,
background_color=bg_color,
background_image=gen_image if gen_image else Image.open("/home/user/app/ALL_image_formation/image_gen.png"),
update_streamlit=True,
height=int(screen_height//2.16) if screen_height!=1180 else screen_height//2,
width=int(screen_width//2.3) if screen_width!=820 else screen_width//2,
drawing_mode=drawing_mode,
point_display_radius=point_display_radius if drawing_mode == 'point' else 0,
key="canvas",
)
with column1:
# prompt=st.text_area("Please provide the prompt")
prompt=st.chat_input("Please provide the prompt")
negative_prompt="the black masked area"
# run=st.button("run_experiment")
if bg_doc:
if len(dictionary['every_prompt_with_val'])==0:
query_embedding = model.encode(["something"])
else:
query_embedding = model.encode([dictionary['every_prompt_with_val'][-1][0]])
retrieved_chunks = max([(util.cos_sim(match[0],query_embedding),match[-1])for match in vector_store])[-1]
with implementation:
text_lookup=retrieved_chunks
pages=[]
with fitz.open("temp.pdf") as doc:
page_number = st.sidebar.number_input(
"Page number", min_value=1, max_value=doc.page_count, value=1, step=1
)
for page_no in range(doc.page_count):
pages.append(doc.load_page(page_no - 1))
# areas = pages[page_number-1].search_for(text_lookup)
with st.container(height=int(screen_height//1.8)):
for pg_no in pages[::-1]:
areas = pg_no.search_for(text_lookup)
for area in areas:
pg_no.add_rect_annot(area)
pix = pg_no.get_pixmap(dpi=100).tobytes()
st.image(pix,use_column_width=True)
if bg_doc and prompt:
query_embedding = model.encode([prompt])
retrieved_chunks = max([(util.cos_sim(match[0],query_embedding),match[-1])for match in vector_store])[-1]
print(retrieved_chunks)
prompt = "Context: "+ retrieved_chunks +"\n"+send_prompt()+ "\n"+prompt
modifiedValue="@working"
dictionary['every_prompt_with_val'].append((prompt,modifiedValue))
st.rerun()
elif not bg_doc and canvas_result.image_data is not None:
if prompt:
text_or_image=multimodel_output(prompt)
if text_or_image=="LABEL_0":
if "generated_image_prompt" not in dictionary:
dictionary['generated_image_prompt']=[]
if prompt not in dictionary['prompt_collection'] and prompt not in dictionary['generated_image_prompt']:
dictionary['prompt_collection']=[prompt]+dictionary['prompt_collection']
new_size=np.array(canvas_result.image_data).shape[:2]
new_size=(new_size[-1],new_size[0])
if bg_image!=dictionary["bg_image"] :
dictionary["bg_image"]=bg_image
if bg_image!=None:
imf=Image.open(bg_image).resize(new_size)
else:
with open("/home/user/app/lotte_animation_saver/animation_4.json") as read:
url_json=json.load(read)
st_lottie(url_json)
imf=Image.open("/home/user/app/ALL_image_formation/home_screen.jpg").resize(new_size)
else:
if len(dictionary['current_image'])!=0:
imf=dictionary['current_image'][0]
else:
with open("/home/user/app/lotte_animation_saver/animation_4.json") as read:
url_json=json.load(read)
st_lottie(url_json)
imf=Image.open("/home/user/app/ALL_image_formation/home_screen.jpg")
negative_image =d4_to_3d(np.array(canvas_result.image_data))
if np.sum(negative_image)==0:
negative_image=Image.fromarray(np.where(negative_image == False, True, negative_image))
else:
negative_image=Image.fromarray(negative_image)
modifiedValue=model_out_put(imf,negative_image,prompt,negative_prompt)
modifiedValue.save("/home/user/app/ALL_image_formation/current_session_image.png")
dictionary['current_image']=[modifiedValue]+dictionary['current_image']
dictionary['every_prompt_with_val'].append((prompt,modifiedValue))
st.rerun()
else:
st.write("nothing importent")
modifiedValue="@working"
dictionary['every_prompt_with_val'].append((prompt,modifiedValue))
st.rerun()
# st.image(modifiedValue,width=300)
# if canvas_result.json_data is not None:
# objects = pd.json_normalize(canvas_result.json_data["objects"]) # need to convert obj to str because PyArrow
# for col in objects.select_dtypes(include=['object']).columns:
# objects[col] = objects[col].astype("str")
|