File size: 24,330 Bytes
4947b21
 
 
 
 
 
 
 
dd32433
5482ce2
c216cfa
4947b21
 
10719a6
c216cfa
4947b21
 
 
 
 
 
 
 
 
 
 
 
 
 
f47cd37
c216cfa
de0d9d3
 
 
 
10719a6
de0d9d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c216cfa
 
 
4947b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e91526e
 
756c707
 
 
 
 
 
 
 
 
 
 
4947b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f45ed5
8ccaac3
 
 
 
 
 
 
 
001f645
 
8ccaac3
 
 
 
 
 
 
4947b21
 
 
b0f1bc1
4947b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb641fa
 
 
4947b21
fb641fa
4947b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb641fa
 
4947b21
 
 
 
 
 
 
 
 
 
f71b612
4947b21
 
 
 
 
 
 
 
 
 
f71b612
4947b21
 
 
 
 
 
 
 
 
 
c216cfa
 
de0d9d3
4947b21
 
 
c216cfa
4947b21
c216cfa
4947b21
c216cfa
4947b21
 
 
 
 
 
f71b612
4947b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb641fa
 
 
4947b21
 
73214f2
 
 
4947b21
 
 
f71b612
4947b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f71b612
4947b21
 
 
 
 
 
 
 
 
f71b612
4947b21
 
 
 
 
 
 
 
f71b612
4947b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f71b612
4947b21
 
 
 
 
 
 
 
 
f71b612
4947b21
 
 
 
 
f71b612
4947b21
 
 
 
 
 
 
 
 
 
f71b612
4947b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f71b612
4947b21
 
 
 
f71b612
4947b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb641fa
4947b21
 
2eeebba
c216cfa
 
 
 
e5e5ecc
f99fae3
5f9c583
 
 
 
 
 
 
e5e5ecc
c216cfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2eeebba
c216cfa
 
 
 
 
 
 
2eeebba
 
c216cfa
 
 
 
4947b21
 
 
 
 
 
 
 
 
 
 
 
10719a6
 
 
 
 
 
 
4947b21
10719a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c216cfa
 
 
 
 
4947b21
c216cfa
 
3776898
c216cfa
4947b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f71b612
4947b21
 
f71b612
4947b21
 
 
 
f71b612
4947b21
 
f71b612
4947b21
 
 
 
 
 
 
 
f71b612
4947b21
 
 
 
 
 
 
 
 
 
 
 
b31ef15
 
 
 
4947b21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
import pandas as pd
from PIL import Image
import streamlit as st
import cv2
from streamlit_drawable_canvas import st_canvas
import torch
from diffusers import AutoPipelineForInpainting
import numpy as np
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document
from sentence_transformers import SentenceTransformer,util
from streamlit_image_select import image_select
import os
import fitz
import PyPDF2
import requests 
from streamlit_navigation_bar import st_navbar
from langchain_community.llms import Ollama
import base64
from io import BytesIO
from PIL import Image, ImageDraw
from streamlit_lottie import st_lottie 
from streamlit_option_menu import option_menu
import json
from transformers import pipeline
import streamlit as st
from streamlit_modal import Modal
import streamlit.components.v1 as components
from datetime import datetime
from streamlit_js_eval import streamlit_js_eval
from streamlit_pdf_viewer import pdf_viewer
def consume_llm_api(prompt):
    """
    Sends a prompt to the LLM API and processes the streamed response.
    """
    url = "https://wise-eagles-send.loca.lt/api/llm-response"
    headers = {"Content-Type": "application/json"}
    payload = {"prompt": prompt}

    try:
        print("Sending prompt to the LLM API...")
        with requests.post(url, json=payload, headers=headers, stream=True) as response:
            response.raise_for_status()
            print("Response from LLM API:\n")
            for line in response:
                yield(line.decode('utf-8'))
            # print(type(response))
            # yield(response)
    except requests.RequestException as e:
        print(f"Error consuming API: {e}")
    except Exception as e:
        print(f"Unexpected error: {e}")
def send_prompt():
    return "please respond according to the prompt asked below from the above context"
    
def image_to_base64(image_path):
    with open(image_path, "rb") as img_file:
        return base64.b64encode(img_file.read()).decode()
    

@st.cache_resource
def load_model():
    pipeline_ = AutoPipelineForInpainting.from_pretrained("kandinsky-community/kandinsky-2-2-decoder-inpaint", torch_dtype=torch.float16).to("cuda")
    return pipeline_

# @st.cache_resource
def prompt_improvment(pre_prompt):

    enhancement="Please use details from the prompt mentioned above, focusing only what user is thinking with the prompt and also add 8k resolution. Its a request only provide image description and brief prompt no other text."
    prompt = pre_prompt+"\n"+enhancement

    return consume_llm_api(prompt)

def process_pdf(file):
    documents = []
    with open(file, "rb") as f:
        reader = PyPDF2.PdfReader(f)
        for page in reader.pages:
            text = page.extract_text()
            if text:  # Ensure that the page has text
                documents.append(Document(page_content=text))
    return documents
    
def numpy_to_list(array):

    current=[]
    for value in array:
        if isinstance(value,type(np.array([]))):
            result=numpy_to_list(value)
            current.append(result)
        else:
            
            current.append(int(value))
    return current



@st.cache_resource
def llm_text_response():
    llm = Ollama(model="llama3:latest",num_ctx=1000)
    return llm.stream

def model_single_out(prompt):
    pipe=load_model()
    image = pipe(prompt).images[0]
    return image

def model_out_put(init_image,mask_image,prompt,negative_prompt):
    API_URL = "https://7716-205-196-17-124.ngrok-free.app/api/llm-response"
    initial_image_base64 = numpy_to_list(np.array(init_image))
    mask_image_base64 = numpy_to_list(np.array(mask_image))
    payload = {
        "prompt": prompt,  # Replace with your desired prompt
        "initial_img": initial_image_base64,
        "masked_img": mask_image_base64,
        "negative_prompt": negative_prompt # Replace with your negative prompt
    }
    response_ = requests.post(API_URL, json=payload)
    response_data = response_.json()
    output_image_base64 = response_data.get("img", "")

    output_image=np.array(output_image_base64,dtype=np.uint8)

    output_image = Image.fromarray(output_image)
    # output_image.show()
    return output_image

@st.cache_resource
def multimodel():
    pipeline_ = pipeline("text-classification", model = "/home/user/app/model_path/")
    return pipeline_
   
def multimodel_output(prompt):
    pipeline_ = multimodel()
    image = pipeline_(prompt)
    return image[0]['label']

def d4_to_3d(image):
    formatted_array=[]
    for j in image:
        neste_list=[]
        for k in j:
            if any([True if i>0 else False for i in k]):
                neste_list.append(True)
            else:
                neste_list.append(False)
        formatted_array.append(neste_list)
    print(np.shape(formatted_array))
    return np.array(formatted_array)
    
st.set_page_config(layout="wide")

# st.write(str(os.getcwd()))
screen_width = streamlit_js_eval(label="screen.width",js_expressions='screen.width')
screen_height = streamlit_js_eval(label="screen.height",js_expressions='screen.height')
img_selection=None

# Specify canvas parameters in application
drawing_mode = st.sidebar.selectbox(
    "Drawing tool:", ("freedraw","point", "line", "rect", "circle", "transform")
)


dictionary=st.session_state
if "every_prompt_with_val" not in dictionary:
    dictionary['every_prompt_with_val']=[]
if "current_image" not in dictionary:
    dictionary['current_image']=[]
if "prompt_collection"  not in dictionary:
    dictionary['prompt_collection']=[]
if "user" not in dictionary:
    dictionary['user']=None
if "current_session" not in dictionary:
    dictionary['current_session']=None
if "image_movement" not in dictionary:
    dictionary['image_movement']=None

stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 20)
if drawing_mode == 'point':
        point_display_radius = st.sidebar.slider("Point display radius: ", 1, 25, 3)
stroke_color = '#000000'
bg_color = "#eee"


column1,column2=st.columns([0.7,0.35])

with open("/home/user/app/DataBase/datetimeRecords.json","r") as read:
    dateTimeRecord=json.load(read)
with column2:
    st.header("HISTORY")
    tab1,tab2,tab3,tab4=st.tabs(["CHAT HISTORY","IMAGES","PROMPT IMPROVEMENT","LOGIN"])
    with tab1:

        
 
        if not len(dictionary['every_prompt_with_val']):
            st.header("I will store all the chat for the current session")
            with open("/home/user/app/lotte_animation_saver/animation_4.json") as read:
                url_json=json.load(read)
            st_lottie(url_json,height = 400)
        else:

            with st.container(height=600):


                for index,prompts_ in enumerate(dictionary['every_prompt_with_val'][::-1]):
                    if prompts_[-1]=="@working":
                        if index==0:

                            st.write(prompts_[0].split(send_prompt())[-1].upper() if send_prompt() in prompts_[0] else prompts_[0].upper())
                            data_need=st.write_stream(consume_llm_api(prompts_[0]))
                            dictionary['every_prompt_with_val'][-1]=(prompts_[0],str(data_need))
                            
                    elif isinstance(prompts_[-1],str):
                        show_case_text=prompts_[0].split(send_prompt())[-1].upper() if send_prompt() in prompts_[0] else prompts_[0].upper()
                        if index==0:
                            st.text_area(label=show_case_text,value=prompts_[-1],height=500,key=str(index))
                        else:
                            st.text_area(label=show_case_text,value=prompts_[-1],key=str(index))

                    else:
                        st.write(prompts_[0].upper())
                        with st.container(height=400):
                            format1,format2=st.columns([0.2,0.8])
                            with format1:
                                new_img=Image.open("/home/user/app/ALL_image_formation/image_gen.png")
                                st.write("<br>",unsafe_allow_html=True)
                                size = min(new_img.size)
                                mask = Image.new('L', (size, size), 0)
                                draw = ImageDraw.Draw(mask)
                                draw.ellipse((0, 0, size, size), fill=255)

                                image = new_img.crop((0, 0, size, size))
                                image.putalpha(mask)
                                st.image(image)                    
                            with format2:

                                st.write("<br>",unsafe_allow_html=True)
                                size = min(prompts_[-1].size)
                                mask = Image.new('L', (size, size), 0)
                                draw = ImageDraw.Draw(mask)
                                draw.ellipse((0, 0, size, size), fill=255)

                                # Crop the image to a square and apply the mask
                                image = prompts_[-1].crop((0, 0, size, size))
                                image.putalpha(mask)
                                st.image(image)
 
    with tab2:
        
        if "current_image" in dictionary and len(dictionary['current_image']):
            with st.container(height=600):
                dictinory_length=len(dictionary['current_image'])
                
                img_selection = image_select(
                    label="",
                    images=dictionary['current_image'] if len(dictionary['current_image'])!=0 else None,
                )
                if img_selection in dictionary['current_image']:
                    dictionary['current_image'].remove(img_selection)
                    dictionary['current_image'].insert(0,img_selection)
                    if dictionary['image_movement']!=img_selection:
                        dictionary['image_movement']=img_selection
                        st.rerun()                    # st.rerun()

                img_selection.save("image.png")
            with open("image.png", "rb") as file:
                downl=st.download_button(label="DOWNLOAD",data=file,file_name="image.png",mime="image/png")
            os.remove("image.png")
        else:

            st.header("This section will store the updated images")
            with open("/home/user/app/lotte_animation_saver/animation_1.json") as read:
                url_json=json.load(read)
            st_lottie(url_json,height = 400)
    with tab3:
        if len(dictionary['prompt_collection'])!=0:
            with st.container(height=600):
                prompt_selection=st.selectbox(label="Select the prompt for improvment",options=["Mention below are prompt history"]+dictionary["prompt_collection"],index=0)

                if prompt_selection!="Mention below are prompt history":

                    generated_prompt=prompt_improvment(prompt_selection)
                    dictionary['generated_image_prompt'].append(generated_prompt)
                    st.write_stream(generated_prompt)

        else:

            st.header("This section will provide prompt improvement section")
            with open("/home/user/app/lotte_animation_saver/animation_3.json") as read:
                url_json=json.load(read)
            st_lottie(url_json,height = 400)
        with tab4:
            
            # with st.container(height=600):

            if not dictionary['user']   : 
                with st.form("my_form"):
                    # st.header("Please login for save your data")
                    with open("/home/user/app/lotte_animation_saver/animation_5.json") as read:
                        url_json=json.load(read)
                    st_lottie(url_json,height = 200)                
                    user_id = st.text_input("user login")
                    password = st.text_input("password",type="password")
                    submitted_login = st.form_submit_button("Submit")
                    # Every form must have a submit button.

                    if submitted_login:
                        with open("/home/user/app/DataBase/login.json","r") as read:
                            login_base=json.load(read)
                        if user_id in login_base and login_base[user_id]==password:
                            dictionary['user']=user_id
                            st.rerun()
                        else:
                            st.error("userid or password incorrect")

                        st.write("working")
                    modal = Modal(
                        "Sign up", 
                        key="demo-modal",
                        
                        padding=10,    # default value
                        max_width=600  # default value
                    )
                open_modal = st.button("sign up")
                if open_modal:
                    modal.open()

                if modal.is_open():
                    with modal.container():

                        with st.form("my_form1"):
                            sign_up_column_left,sign_up_column_right=st.columns(2)
                            with sign_up_column_left:
                                with open("/home/user/app/lotte_animation_saver/animation_6.json") as read:
                                    url_json=json.load(read)
                                st_lottie(url_json,height = 200) 
    
                            with sign_up_column_right:
                                user_id = st.text_input("user login")
                                password = st.text_input("password",type="password")
                                submitted_signup = st.form_submit_button("Submit")

                            if submitted_signup:
                                with open("/home/user/app/DataBase/login.json","r") as read:
                                    login_base=json.load(read)
                                if not login_base:
                                    login_base={}
                                if user_id not in login_base:
                                    login_base[user_id]=password
                                    with open("/home/user/app/DataBase/login.json","w") as write:
                                        json.dump(login_base,write,indent=2)  
                                    st.success("you are a part now")  
                                    dictionary['user']=user_id
                                    modal.close()                       
                                else:
                                    st.error("user id already exists")
            else:
                st.header("REPORTED ISSUES")
                with st.container(height=370):

                    with open("/home/user/app/DataBase/datetimeRecords.json") as feedback:
                        temp_issue=json.load(feedback)

                    arranged_feedback=reversed(temp_issue['database'])
                    
                    for report in arranged_feedback:
                        user_columns,user_feedback=st.columns([0.3,0.8])

                        with user_columns:
                            st.write(report[-1])
                        with user_feedback:
                            st.write(report[1])
                     
                feedback=st.text_area("Feedback Report and Improvement",placeholder="")
                summit=st.button("submit")
                if summit:
                    with open("/home/user/app/DataBase/datetimeRecords.json","r") as feedback_sumit:
                        temp_issue_submit=json.load(feedback_sumit)        
                    if  "database" not in temp_issue_submit:
                        temp_issue_submit["database"]=[]
                    temp_issue_submit["database"].append((str(datetime.now()),feedback,dictionary['user'])) 
                    with open("/home/user/app/DataBase/datetimeRecords.json","w") as feedback_sumit:
                        json.dump(temp_issue_submit,feedback_sumit)                    
                            


                    # st.rerun()
                
                
                    



bg_image = st.sidebar.file_uploader("PLEASE UPLOAD IMAGE FOR EDITING:", type=["png", "jpg"])
bg_doc = st.sidebar.file_uploader("PLEASE UPLOAD DOC FOR PPT/PDF/STORY:", type=["pdf","xlsx"])


if "bg_image" not in dictionary:
    dictionary["bg_image"]=None

if img_selection  and dictionary['bg_image']==bg_image:
    gen_image=dictionary['current_image'][0]
else:
    if bg_image:
        gen_image=Image.open(bg_image) 
    else:
        gen_image=None






with column1:
# Create a canvas component
    changes,implementation,current=st.columns([0.01,0.9,0.01])

    with implementation:
                st.write("<br>"*5,unsafe_allow_html=True)
                if bg_doc:
                    
                    canvas_result=None
                    binary_data = bg_doc.getvalue()
                    binary_data = base64.b64encode(bg_doc.getvalue()).decode('utf-8')
                    pdf_display = F'<embed class="pdfobject" type="application/pdf" title="Embedded PDF" src="data:application/pdf;base64,{binary_data}" width={screen_width//2.07} height={screen_height//1.83} type="application/pdf">'
                    st.markdown(pdf_display, unsafe_allow_html=True)
                    pdf_display =  f"""<embed
    class="pdfobject"
    type="application/pdf"
    title="Embedded PDF"
    src="data:application/pdf;base64,{binary_data}"
    style="overflow: auto; width: 100%; height: 100%;">"""
                    st.markdown(pdf_display, unsafe_allow_html=True)
                    with open("temp.pdf", "wb") as f:
                        f.write(bg_doc.getbuffer())
                    
                    # Process the uploaded PDF file
                    data = process_pdf("temp.pdf")
                    text_splitter = RecursiveCharacterTextSplitter(chunk_size=7500, chunk_overlap=100)
                    chunks = text_splitter.split_documents(data)
                    # chunk_texts = [str(chunk.page_content) for chunk in chunks] 
                    # print("testing",chunk_texts)
                    model_name = "all-MiniLM-L6-v2"
                    model = SentenceTransformer(model_name)
                    embeddings = [model.encode(str(chunk.page_content)) for chunk in chunks]

                    vector_store = []
                    for chunk, embedding in zip(chunks, embeddings):
                        vector_store.append((embedding, chunk.page_content) )
                        
                else:

                    
                    
                    canvas_result = st_canvas(
                        fill_color="rgba(255, 165, 0, 0.3)",  # Fixed fill color with some opacity
                        stroke_width=stroke_width,
                        stroke_color=stroke_color,
                        background_color=bg_color,
                        background_image=gen_image if gen_image else Image.open("/home/user/app/ALL_image_formation/image_gen.png"),
                        update_streamlit=True,
                        height=int(screen_height//2.16) if screen_height!=1180 else screen_height//2,
                        width=int(screen_width//2.3)  if screen_width!=820 else screen_width//2,
                        drawing_mode=drawing_mode,
                        point_display_radius=point_display_radius if drawing_mode == 'point' else 0,
                        key="canvas",
                    )





with column1:
    # prompt=st.text_area("Please provide the prompt")
    prompt=st.chat_input("Please provide the prompt")
    
    negative_prompt="the black masked area"

    # run=st.button("run_experiment")
if bg_doc:
    if len(dictionary['every_prompt_with_val'])==0:
        query_embedding = model.encode(["something"])
    else:

        query_embedding = model.encode([dictionary['every_prompt_with_val'][-1][0]])
    retrieved_chunks = max([(util.cos_sim(match[0],query_embedding),match[-1])for  match in vector_store])[-1]



    with implementation:
        
            text_lookup=retrieved_chunks
            pages=[]
            with fitz.open("temp.pdf") as doc:
                page_number = st.sidebar.number_input(
    "Page number", min_value=1, max_value=doc.page_count, value=1, step=1
                
                    
    )               
                for page_no in range(doc.page_count):
                    pages.append(doc.load_page(page_no - 1))
                
                # areas = pages[page_number-1].search_for(text_lookup)
                with st.container(height=int(screen_height//1.8)):
                    for pg_no in pages[::-1]:
                        areas = pg_no.search_for(text_lookup)
                        for area in areas:
                            pg_no.add_rect_annot(area)

                        pix = pg_no.get_pixmap(dpi=100).tobytes()
                        st.image(pix,use_column_width=True)
                        
if bg_doc and prompt:
    query_embedding = model.encode([prompt])
    retrieved_chunks = max([(util.cos_sim(match[0],query_embedding),match[-1])for  match in vector_store])[-1]
    print(retrieved_chunks)
    prompt = "Context: "+ retrieved_chunks +"\n"+send_prompt()+ "\n"+prompt

    modifiedValue="@working"
    dictionary['every_prompt_with_val'].append((prompt,modifiedValue))
    st.rerun()
elif not bg_doc and canvas_result.image_data is not None:
    if prompt:

        text_or_image=multimodel_output(prompt)
        
        if text_or_image=="LABEL_0":
        
            if "generated_image_prompt" not in dictionary:
                dictionary['generated_image_prompt']=[]
            if prompt not in dictionary['prompt_collection'] and prompt not in dictionary['generated_image_prompt']:
                dictionary['prompt_collection']=[prompt]+dictionary['prompt_collection']
            new_size=np.array(canvas_result.image_data).shape[:2]
            new_size=(new_size[-1],new_size[0])
            if bg_image!=dictionary["bg_image"] :
                dictionary["bg_image"]=bg_image
                if bg_image!=None:
                    imf=Image.open(bg_image).resize(new_size)
                else:
                    with open("/home/user/app/lotte_animation_saver/animation_4.json") as read:
                        url_json=json.load(read)        
                    st_lottie(url_json) 
                    imf=Image.open("/home/user/app/ALL_image_formation/home_screen.jpg").resize(new_size)
            else:
                if len(dictionary['current_image'])!=0:
                    imf=dictionary['current_image'][0]
                else:
                    with open("/home/user/app/lotte_animation_saver/animation_4.json") as read:
                        url_json=json.load(read)        
                    st_lottie(url_json) 
                    imf=Image.open("/home/user/app/ALL_image_formation/home_screen.jpg")

            negative_image =d4_to_3d(np.array(canvas_result.image_data))
            if np.sum(negative_image)==0:
                negative_image=Image.fromarray(np.where(negative_image == False, True, negative_image))
            else:
                negative_image=Image.fromarray(negative_image)
            
            modifiedValue=model_out_put(imf,negative_image,prompt,negative_prompt)
            modifiedValue.save("/home/user/app/ALL_image_formation/current_session_image.png")
            dictionary['current_image']=[modifiedValue]+dictionary['current_image']
            dictionary['every_prompt_with_val'].append((prompt,modifiedValue))
            st.rerun()
        else:
            st.write("nothing importent")
            modifiedValue="@working"
            dictionary['every_prompt_with_val'].append((prompt,modifiedValue))
            st.rerun()
            # st.image(modifiedValue,width=300)
    
        
        
# if canvas_result.json_data is not None:
#     objects = pd.json_normalize(canvas_result.json_data["objects"]) # need to convert obj to str because PyArrow
#     for col in objects.select_dtypes(include=['object']).columns:
#         objects[col] = objects[col].astype("str")