Spaces:
Running
Running
File size: 6,311 Bytes
4de59fa 636ff5e 4de59fa a6b8bd1 fdbecf3 5d09115 fdbecf3 5d09115 7e4a142 b99ec57 5d09115 4de59fa 4b321fc 5d09115 4de59fa 50b1ced 8e6f2e1 ddf2b1e 50b1ced 4de59fa 6af3229 4de59fa 6af3229 4de59fa 50b1ced 4de59fa c0d0a56 4de59fa 50b1ced 4de59fa 50b1ced 4de59fa 03ff2c6 fdbecf3 0b4f4f7 fdbecf3 4de59fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import torch
import torch.onnx
import onnx
from VitsModelSplit.vits_model_only_d import Vits_models_only_decoder
from VitsModelSplit.vits_model import VitsModel
import gradio as gr
import os
def create_file(file_path):
# مسار الملف المؤقت
#file_path = "DDFGDdd.onnx"
# إنشاء ملف ONNX تجريبي في حالة عدم وجوده
if not os.path.exists(file_path):
#with open(file_path, "w") as file:
#file.write("This is a test ONNX model file.")
return None
# إرجاع مسار الملف حتى يمكن تنزيله
return file_path
class OnnxModelConverter:
def __init__(self):
self.model = None
def download_file(self,file_path):
if not os.path.exists(file_path):
#with open(file_path, "w") as file:
#file.write("This is a test ONNX model.")
return None
return file_path
def convert(self, model_name, token, onnx_filename, conversion_type):
"""
Main function to handle different types of model conversions.
Args:
model_name (str): Name of the model to convert.
token (str): Access token for loading the model.
onnx_filename (str): Desired filename for the ONNX output.
conversion_type (str): Type of conversion ('decoder', 'only_decoder', or 'full_model').
Returns:
str: The path to the generated ONNX file.
"""
if conversion_type == "decoder":
return self.convert_decoder(model_name, token, onnx_filename)
elif conversion_type == "only_decoder":
return self.convert_only_decoder(model_name, token, onnx_filename)
elif conversion_type == "full_model":
return self.convert_full_model(model_name, token, onnx_filename)
else:
raise ValueError("Invalid conversion type. Choose from 'decoder', 'only_decoder', or 'full_model'.")
def convert_decoder(self, model_name, token, onnx_filename):
"""
Converts only the decoder part of the Vits model to ONNX format.
Args:
model_name (str): Name of the model to convert.
token (str): Access token for loading the model.
onnx_filename (str): Desired filename for the ONNX output.
Returns:
str: The path to the generated ONNX file.
"""
model = VitsModel.from_pretrained(model_name, token=token)
onnx_file = f"/tmp/{onnx_filename}.onnx"
example_input = torch.randn(1, 192, 10)
torch.onnx.export(
model.decoder,
example_input,
onnx_file,
opset_version=11,
input_names=['input'],
output_names=['output'],
dynamic_axes={'input': {0: 'batch_size', 1: 'sequence_length'}, 'output': {0: 'batch_size'}}
)
return self.download_file(onnx_file)
def convert_only_decoder(self, model_name, token, onnx_filename):
"""
Converts only the decoder part of the Vits model to ONNX format.
Args:
model_name (str): Name of the model to convert.
token (str): Access token for loading the model.
onnx_filename (str): Desired filename for the ONNX output.
Returns:
str: The path to the generated ONNX file.
"""
model = Vits_models_only_decoder.from_pretrained(model_name, token=token)
onnx_file = f"/tmp/{onnx_filename}.onnx"
vocab_size = model.text_encoder.embed_tokens.weight.size(0)
example_input = torch.randint(0, vocab_size, (1, 100), dtype=torch.LongTensor)
torch.onnx.export(
model,
example_input,
onnx_file,
opset_version=11,
input_names=['input'],
output_names=['output'],
dynamic_axes={'input': {0: 'batch_size', 1: 'sequence_length'}, 'output': {0: 'batch_size'}}
)
return self.download_file(onnx_file)
def convert_full_model(self, model_name, token, onnx_filename):
"""
Converts the full Vits model (including encoder and decoder) to ONNX format.
Args:
model_name (str): Name of the model to convert.
token (str): Access token for loading the model.
onnx_filename (str): Desired filename for the ONNX output.
Returns:
str: The path to the generated ONNX file.
"""
model = VitsModel.from_pretrained(model_name, token=token)
onnx_file = f"/tmp/{onnx_filename}.onnx"
vocab_size = model.text_encoder.embed_tokens.weight.size(0)
example_input = torch.randint(0, vocab_size, (1, 100), dtype=torch.long)
torch.onnx.export(
model,
example_input,
onnx_file,
opset_version=11,
input_names=['input'],
output_names=['output'],
dynamic_axes={'input': {0: 'batch_size', 1: 'sequence_length'}, 'output': {0: 'batch_size'}}
)
return self.download_file(onnx_file)
def starrt(self):
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
text_n_model=gr.Textbox(label="name model")
text_n_token=gr.Textbox(label="token")
text_n_onxx=gr.Textbox(label="name model onxx")
choice = gr.Dropdown(choices=["decoder", "only_decoder", "full_model"], label="My Dropdown")
with gr.Column():
btn=gr.Button("convert")
label=gr.Label("return name model onxx")
btn.click(self.convert,[text_n_model,text_n_token,text_n_onxx,choice],[gr.File(label="Download ONNX File")])
btx=gr.Textbox("namefile")
download_button1=gr.Button("send")
download_button = gr.File(label="Download ONNX File")
download_button1.click(create_file,[btx],[download_button])
#choice.change(fn=function_change, inputs=choice, outputs=label)
return demo
c=OnnxModelConverter()
cc=c.starrt()
cc.launch(share=True)
|