File size: 16,978 Bytes
38f004a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import math
from typing import Optional, Tuple, Union
import numpy as np
import torch
from torch import nn
from transformers.activations import ACT2FN
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
from transformers.modeling_outputs import BaseModelOutput  

from .vits_config import VitsConfig
from .vits_output import VitsTextEncoderOutput


#....................................................





class VitsFeedForward(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.conv_1 = nn.Conv1d(config.hidden_size, config.ffn_dim, config.ffn_kernel_size)
        self.conv_2 = nn.Conv1d(config.ffn_dim, config.hidden_size, config.ffn_kernel_size)
        self.dropout = nn.Dropout(config.activation_dropout)

        if isinstance(config.hidden_act, str):
            self.act_fn = ACT2FN[config.hidden_act]
        else:
            self.act_fn = config.hidden_act

        if config.ffn_kernel_size > 1:
            pad_left = (config.ffn_kernel_size - 1) // 2
            pad_right = config.ffn_kernel_size // 2
            self.padding = [pad_left, pad_right, 0, 0, 0, 0]
        else:
            self.padding = None

    def forward(self, hidden_states, padding_mask):
        hidden_states = hidden_states.permute(0, 2, 1)
        padding_mask = padding_mask.permute(0, 2, 1)

        hidden_states = hidden_states * padding_mask
        if self.padding is not None:
            hidden_states = nn.functional.pad(hidden_states, self.padding)

        hidden_states = self.conv_1(hidden_states)
        hidden_states = self.act_fn(hidden_states)
        hidden_states = self.dropout(hidden_states)

        hidden_states = hidden_states * padding_mask
        if self.padding is not None:
            hidden_states = nn.functional.pad(hidden_states, self.padding)

        hidden_states = self.conv_2(hidden_states)
        hidden_states = hidden_states * padding_mask

        hidden_states = hidden_states.permute(0, 2, 1)
        return hidden_states


#.............................................................................................

class VitsAttention(nn.Module):
    """Multi-headed attention with relative positional representation."""

    def __init__(self, config: VitsConfig):
        super().__init__()
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.dropout = config.attention_dropout
        self.window_size = config.window_size

        self.head_dim = self.embed_dim // self.num_heads
        self.scaling = self.head_dim**-0.5

        if (self.head_dim * self.num_heads) != self.embed_dim:
            raise ValueError(
                f"hidden_size must be divisible by num_attention_heads (got `hidden_size`: {self.embed_dim}"
                f" and `num_attention_heads`: {self.num_heads})."
            )

        self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
        self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
        self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)

        if self.window_size:
            self.emb_rel_k = nn.Parameter(torch.randn(1, self.window_size * 2 + 1, self.head_dim) * self.scaling)
            self.emb_rel_v = nn.Parameter(torch.randn(1, self.window_size * 2 + 1, self.head_dim) * self.scaling)

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        key_value_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        layer_head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        """Input shape: Batch x Time x Channel"""

        # if key_value_states are provided this layer is used as a cross-attention layer
        # for the decoder

        bsz, tgt_len, _ = hidden_states.size()

        # get query proj
        query_states = self.q_proj(hidden_states) * self.scaling

        # self_attention
        key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
        value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

        proj_shape = (bsz * self.num_heads, -1, self.head_dim)
        query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
        key_states = key_states.view(*proj_shape)
        value_states = value_states.view(*proj_shape)

        src_len = key_states.size(1)
        attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))

        if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
                f" {attn_weights.size()}"
            )

        if self.window_size is not None:
            key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, src_len)
            relative_logits = torch.matmul(query_states, key_relative_embeddings.transpose(-2, -1))
            rel_pos_bias = self._relative_position_to_absolute_position(relative_logits)
            attn_weights += rel_pos_bias

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, tgt_len, src_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
                )
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        attn_weights = nn.functional.softmax(attn_weights, dim=-1)

        if layer_head_mask is not None:
            if layer_head_mask.size() != (self.num_heads,):
                raise ValueError(
                    f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
                    f" {layer_head_mask.size()}"
                )
            attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        if output_attentions:
            # this operation is a bit awkward, but it's required to
            # make sure that attn_weights keeps its gradient.
            # In order to do so, attn_weights have to be reshaped
            # twice and have to be reused in the following
            attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
        else:
            attn_weights_reshaped = None

        attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)

        attn_output = torch.bmm(attn_probs, value_states)

        if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        if self.window_size is not None:
            value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, src_len)
            relative_weights = self._absolute_position_to_relative_position(attn_probs)
            rel_pos_bias = torch.matmul(relative_weights, value_relative_embeddings)
            attn_output += rel_pos_bias

        attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
        attn_output = attn_output.transpose(1, 2)

        # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
        # partitioned aross GPUs when using tensor-parallelism.
        attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)

        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights_reshaped

    def _get_relative_embeddings(self, relative_embeddings, length):
        pad_length = max(length - (self.window_size + 1), 0)
        if pad_length > 0:
            relative_embeddings = nn.functional.pad(relative_embeddings, [0, 0, pad_length, pad_length, 0, 0])

        slice_start_position = max((self.window_size + 1) - length, 0)
        slice_end_position = slice_start_position + 2 * length - 1
        return relative_embeddings[:, slice_start_position:slice_end_position]

    def _relative_position_to_absolute_position(self, x):
        batch_heads, length, _ = x.size()

        # Concat columns of pad to shift from relative to absolute indexing.
        x = nn.functional.pad(x, [0, 1, 0, 0, 0, 0])

        # Concat extra elements so to add up to shape (len+1, 2*len-1).
        x_flat = x.view([batch_heads, length * 2 * length])
        x_flat = nn.functional.pad(x_flat, [0, length - 1, 0, 0])

        # Reshape and slice out the padded elements.
        x_final = x_flat.view([batch_heads, length + 1, 2 * length - 1])
        x_final = x_final[:, :length, length - 1 :]
        return x_final

    def _absolute_position_to_relative_position(self, x):
        batch_heads, length, _ = x.size()

        # Pad along column
        x = nn.functional.pad(x, [0, length - 1, 0, 0, 0, 0])
        x_flat = x.view([batch_heads, length**2 + length * (length - 1)])

        # Add 0's in the beginning that will skew the elements after reshape
        x_flat = nn.functional.pad(x_flat, [length, 0, 0, 0])
        x_final = x_flat.view([batch_heads, length, 2 * length])[:, :, 1:]
        return x_final


#.............................................................................................

class VitsEncoderLayer(nn.Module):
    def __init__(self, config: VitsConfig):
        super().__init__()
        self.attention = VitsAttention(config)
        self.dropout = nn.Dropout(config.hidden_dropout)
        self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.feed_forward = VitsFeedForward(config)
        self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        padding_mask: torch.FloatTensor,
        attention_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ):
        residual = hidden_states
        hidden_states, attn_weights = self.attention(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
        )

        hidden_states = self.dropout(hidden_states)
        hidden_states = self.layer_norm(residual + hidden_states)

        residual = hidden_states
        hidden_states = self.feed_forward(hidden_states, padding_mask)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.final_layer_norm(residual + hidden_states)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs

#.............................................................................................

class VitsEncoder(nn.Module):
    def __init__(self, config: VitsConfig):
        super().__init__()
        self.config = config
        self.layers = nn.ModuleList([VitsEncoderLayer(config) for _ in range(config.num_hidden_layers)])
        self.gradient_checkpointing = False
        self.layerdrop = config.layerdrop

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        padding_mask: torch.FloatTensor,
        attention_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutput]:
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        # expand attention_mask
        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)

        hidden_states = hidden_states * padding_mask

        deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()

        for encoder_layer in self.layers:
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            dropout_probability = np.random.uniform(0, 1)

            skip_the_layer = self.training and (dropout_probability < self.layerdrop)
            if not skip_the_layer or deepspeed_zero3_is_enabled:
                # under deepspeed zero3 all gpus must run in sync
                if self.gradient_checkpointing and self.training:
                    layer_outputs = self._gradient_checkpointing_func(
                        encoder_layer.__call__,
                        hidden_states,
                        padding_mask,
                        attention_mask,
                        output_attentions,
                    )
                else:
                    layer_outputs = encoder_layer(
                        hidden_states,
                        attention_mask=attention_mask,
                        padding_mask=padding_mask,
                        output_attentions=output_attentions,
                    )
                hidden_states = layer_outputs[0]

            if skip_the_layer:
                layer_outputs = (None, None)

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)

        hidden_states = hidden_states * padding_mask

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)

        return BaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )
        
#.............................................................................................

class VitsTextEncoder(nn.Module):
    """
    Transformer encoder that uses relative positional representation instead of absolute positional encoding.
    """

    def __init__(self, config: VitsConfig):
        super().__init__()
        self.config = config
        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
        
        self.encoder = VitsEncoder(config)
        self.project = nn.Conv1d(config.hidden_size, config.flow_size * 2, kernel_size=1)

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    def forward(
        self,
        input_ids: torch.Tensor,
        padding_mask: torch.FloatTensor,
        attention_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = True,
    ) -> Union[Tuple[torch.Tensor], VitsTextEncoderOutput]:
        hidden_states = self.embed_tokens(input_ids) * math.sqrt(self.config.hidden_size)

        encoder_outputs = self.encoder(
            hidden_states=hidden_states,
            padding_mask=padding_mask,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        last_hidden_state = encoder_outputs[0] if not return_dict else encoder_outputs.last_hidden_state

        stats = self.project(last_hidden_state.transpose(1, 2)).transpose(1, 2) * padding_mask
        prior_means, prior_log_variances = torch.split(stats, self.config.flow_size, dim=2)

        if not return_dict:
            outputs = (last_hidden_state, prior_means, prior_log_variances) + encoder_outputs[1:]
            return outputs

        return VitsTextEncoderOutput(
            last_hidden_state=last_hidden_state,
            prior_means=prior_means,
            prior_log_variances=prior_log_variances,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )
        
#.............................................................................................