Spaces:
Running
Running
File size: 13,961 Bytes
38f004a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import os
import sys
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import set_seed
import wandb
import logging
import copy
from .vits_config import VitsConfig, VitsPreTrainedModel
from .feature_extraction import VitsFeatureExtractor
from .vits_output import PosteriorDecoderModelOutput
from .dataset_features_collector import FeaturesCollectionDataset
from .posterior_encoder import VitsPosteriorEncoder
from .decoder import VitsHifiGan
class PosteriorDecoderModel(torch.nn.Module):
def __init__(self, config,posterior_encoder,decoder,device=None):
super().__init__()
if device:
self.device = device
else:
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.config = copy.deepcopy(config)
self.posterior_encoder = copy.deepcopy(posterior_encoder)
self.decoder = copy.deepcopy(decoder)
if config.num_speakers > 1:
self.embed_speaker = nn.Embedding(config.num_speakers,
config.speaker_embedding_size
)
self.sampling_rate = config.sampling_rate
self.speaking_rate = config.speaking_rate
self.noise_scale = config.noise_scale
self.noise_scale_duration = config.noise_scale_duration
self.segment_size = self.config.segment_size // self.config.hop_length
self.to(self.device)
#....................................
def slice_segments(self,hidden_states, ids_str, segment_size=4):
batch_size, channels, _ = hidden_states.shape
# 1d tensor containing the indices to keep
indices = torch.arange(segment_size).to(ids_str.device)
# extend the indices to match the shape of hidden_states
indices = indices.view(1, 1, -1).expand(batch_size, channels, -1)
# offset indices with ids_str
indices = indices + ids_str.view(-1, 1, 1)
# gather indices
output = torch.gather(hidden_states, dim=2, index=indices)
return output
#....................................
def rand_slice_segments(self,hidden_states, sample_lengths=None, segment_size=4):
batch_size, _, seq_len = hidden_states.size()
if sample_lengths is None:
sample_lengths = seq_len
ids_str_max = sample_lengths - segment_size + 1
ids_str = (torch.rand([batch_size]).to(device=hidden_states.device) * ids_str_max).to(dtype=torch.long)
ret = self.slice_segments(hidden_states, ids_str, segment_size)
return ret, ids_str
#....................................
def forward(
self,
labels: Optional[torch.FloatTensor] = None,
labels_attention_mask: Optional[torch.Tensor] = None,
speaker_id: Optional[int] = None,
return_dict: Optional[bool] = True,
) :
if self.config.num_speakers > 1 and speaker_id is not None:
if isinstance(speaker_id, int):
speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device)
elif isinstance(speaker_id, (list, tuple, np.ndarray)):
speaker_id = torch.tensor(speaker_id, device=self.device)
if not ((0 <= speaker_id).all() and (speaker_id < self.config.num_speakers).all()).item():
raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.")
if not (len(speaker_id) == 1 or len(speaker_id == len(labels))):
raise ValueError(
f"You passed {len(speaker_id)} `speaker_id` but you should either pass one speaker id or `batch_size` `speaker_id`."
)
speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1)
else:
speaker_embeddings = None
if labels_attention_mask is not None:
labels_padding_mask = labels_attention_mask.unsqueeze(1).float()
else:
labels_attention_mask = torch.ones((labels.shape[0], labels.shape[2])).float().to(self.device)
labels_padding_mask = labels_attention_mask.unsqueeze(1)
posterior_latents, posterior_means, posterior_log_variances = self.posterior_encoder(
labels, labels_padding_mask, speaker_embeddings
)
label_lengths = labels_attention_mask.sum(dim=1)
latents_slice, ids_slice = self.rand_slice_segments(posterior_latents,
label_lengths,
segment_size=self.segment_size
)
waveform = self.decoder(latents_slice, speaker_embeddings)
if not return_dict:
outputs = (
labels_padding_mask,
posterior_latents,
posterior_means,
posterior_log_variances,
latents_slice,
ids_slice,
waveform,
)
return outputs
return PosteriorDecoderModelOutput(
labels_padding_mask = labels_padding_mask,
posterior_latents = posterior_latents,
posterior_means = posterior_means,
posterior_log_variances = posterior_log_variances,
latents_slice = latents_slice,
ids_slice = ids_slice,
waveform = waveform,
)
#....................................
def trainer(self,
train_dataset_dir = None,
eval_dataset_dir = None,
full_generation_dir = None,
feature_extractor = VitsFeatureExtractor(),
training_args = None,
full_generation_sample_index= 0,
project_name = "Posterior_Decoder_Finetuning",
wandbKey = "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79",
):
os.makedirs(training_args.output_dir,exist_ok=True)
logger = logging.getLogger(f"{__name__} Training")
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
wandb.login(key= wandbKey)
wandb.init(project= project_name,config = training_args.to_dict())
set_seed(training_args.seed)
# Apply Weight Norm Decoder
self.decoder.apply_weight_norm()
# Save Config
self.config.save_pretrained(training_args.output_dir)
train_dataset = FeaturesCollectionDataset(dataset_dir = train_dataset_dir,
device = self.device
)
eval_dataset = None
if training_args.do_eval:
eval_dataset = FeaturesCollectionDataset(dataset_dir = eval_dataset_dir,
device = self.device
)
full_generation_dataset = FeaturesCollectionDataset(dataset_dir = full_generation_dir,
device = self.device
)
self.full_generation_sample = full_generation_dataset[full_generation_sample_index]
# init optimizer, lr_scheduler
optimizer = torch.optim.AdamW(
self.parameters(),
training_args.learning_rate,
betas=[training_args.adam_beta1, training_args.adam_beta2],
eps=training_args.adam_epsilon,
)
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
optimizer, gamma=training_args.lr_decay, last_epoch=-1
)
logger.info("***** Running training *****")
logger.info(f" Num Epochs = {training_args.num_train_epochs}")
#.......................loop training............................
global_step = 0
for epoch in range(training_args.num_train_epochs):
train_losses_sum = 0
lr_scheduler.step()
for step, batch in enumerate(train_dataset):
# forward through model
outputs = self.forward(
labels=batch["labels"],
labels_attention_mask=batch["labels_attention_mask"],
speaker_id=batch["speaker_id"]
)
mel_scaled_labels = batch["mel_scaled_input_features"]
mel_scaled_target = self.slice_segments(mel_scaled_labels, outputs.ids_slice,self.segment_size)
mel_scaled_generation = feature_extractor._torch_extract_fbank_features(outputs.waveform.squeeze(1))[1]
target_waveform = batch["waveform"].transpose(1, 2)
target_waveform = self.slice_segments(
target_waveform,
outputs.ids_slice * feature_extractor.hop_length,
self.config.segment_size
)
# backpropagate
loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation)
loss = loss_mel.detach().item()
train_losses_sum = train_losses_sum + loss
loss_mel.backward()
optimizer.step()
optimizer.zero_grad()
print(f"TRAINIG - batch {step}, waveform {(batch['waveform'].shape)}, step_loss_mel {loss}, lr {lr_scheduler.get_last_lr()[0]}... ")
global_step +=1
# validation
do_eval = training_args.do_eval and (global_step % training_args.eval_steps == 0)
if do_eval:
logger.info("Running validation... ")
eval_losses_sum = 0
for step, batch in enumerate(eval_dataset):
with torch.no_grad():
outputs = self.forward(
labels=batch["labels"],
labels_attention_mask=batch["labels_attention_mask"],
speaker_id=batch["speaker_id"]
)
mel_scaled_labels = batch["mel_scaled_input_features"]
mel_scaled_target = self.slice_segments(mel_scaled_labels, outputs.ids_slice,self.segment_size)
mel_scaled_generation = feature_extractor._torch_extract_fbank_features(outputs.waveform.squeeze(1))[1]
loss = loss_mel.detach().item()
eval_losses_sum +=loss
loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation)
print(f"VALIDATION - batch {step}, waveform {(batch['waveform'].shape)}, step_loss_mel {loss} ... ")
with torch.no_grad():
full_generation_sample = self.full_generation_sample
full_generation =self.forward(
labels=full_generation_sample["labels"],
labels_attention_mask=full_generation_sample["labels_attention_mask"],
speaker_id=full_generation_sample["speaker_id"]
)
full_generation_waveform = full_generation.waveform.cpu().numpy()
wandb.log({
"eval_losses": eval_losses_sum,
"full generations samples": [
wandb.Audio(w.reshape(-1), caption=f"Full generation sample {epoch}", sample_rate=self.sampling_rate)
for w in full_generation_waveform],})
wandb.log({"train_losses":train_losses_sum})
# add weight norms
self.decoder.remove_weight_norm()
torch.save(self.posterior_encoder.state_dict(), os.path.join(training_args.output_dir,"posterior_encoder.pt"))
torch.save(self.decoder.state_dict(), os.path.join(training_args.output_dir,"decoder.pt"))
logger.info("Running final full generations samples... ")
with torch.no_grad():
full_generation_sample = self.full_generation_sample
full_generation = self.forward(
labels=full_generation_sample["labels"],
labels_attention_mask=full_generation_sample["labels_attention_mask"],
speaker_id=full_generation_sample["speaker_id"]
)
full_generation_waveform = full_generation.waveform.cpu().numpy()
wandb.log({"eval_losses": eval_losses_sum,
"full generations samples": [
wandb.Audio(w.reshape(-1), caption=f"Full generation sample {epoch}",
sample_rate=self.sampling_rate) for w in full_generation_waveform],
})
logger.info("***** Training / Inference Done *****")
#....................................
#....................................
|