Spaces:
Running
Running
File size: 29,302 Bytes
38f004a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 |
import numpy as np
import torch
from torch import nn
import math
from typing import Any, Callable, Optional, Tuple, Union
from torch.cuda.amp import autocast, GradScaler
from .vits_config import VitsConfig,VitsPreTrainedModel
from .flow import VitsResidualCouplingBlock
from .duration_predictor import VitsDurationPredictor, VitsStochasticDurationPredictor
from .encoder import VitsTextEncoder
from .decoder import VitsHifiGan
from .posterior_encoder import VitsPosteriorEncoder
from .discriminator import VitsDiscriminator
from .vits_output import VitsModelOutput, VitsTrainingOutput
from .dataset_features_collector import FeaturesCollectionDataset
from .feature_extraction import VitsFeatureExtractor
import os
import sys
from typing import Optional
import tempfile
from torch.cuda.amp import autocast, GradScaler
from IPython.display import clear_output
from transformers import set_seed
import wandb
import logging
import copy
Lst=['input_ids',
'attention_mask',
'waveform',
'labels',
'labels_attention_mask',
'mel_scaled_input_features']
def covert_cuda_batch(d):
#return d
for key in Lst:
d[key]=d[key].cuda(non_blocking=True)
# for key in d['text_encoder_output']:
# d['text_encoder_output'][key]=d['text_encoder_output'][key].cuda(non_blocking=True)
for key in d['posterior_encode_output']:
d['posterior_encode_output'][key]=d['posterior_encode_output'][key].cuda(non_blocking=True)
return d
def generator_loss(disc_outputs):
total_loss = 0
gen_losses = []
for disc_output in disc_outputs:
disc_output = disc_output
loss = torch.mean((1 - disc_output) ** 2)
gen_losses.append(loss)
total_loss += loss
return total_loss, gen_losses
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
loss = 0
real_losses = 0
generated_losses = 0
for disc_real, disc_generated in zip(disc_real_outputs, disc_generated_outputs):
real_loss = torch.mean((1 - disc_real) ** 2)
generated_loss = torch.mean(disc_generated**2)
loss += real_loss + generated_loss
real_losses += real_loss
generated_losses += generated_loss
return loss, real_losses, generated_losses
def feature_loss(feature_maps_real, feature_maps_generated):
loss = 0
for feature_map_real, feature_map_generated in zip(feature_maps_real, feature_maps_generated):
for real, generated in zip(feature_map_real, feature_map_generated):
real = real.detach()
loss += torch.mean(torch.abs(real - generated))
return loss * 2
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
"""
z_p, logs_q: [b, h, t_t]
m_p, logs_p: [b, h, t_t]
"""
z_p = z_p.float()
logs_q = logs_q.float()
m_p = m_p.float()
logs_p = logs_p.float()
z_mask = z_mask.float()
kl = logs_p - logs_q - 0.5
kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
kl = torch.sum(kl * z_mask)
l = kl / torch.sum(z_mask)
return l
#.............................................
# def kl_loss(prior_latents, posterior_log_variance, prior_means, prior_log_variance, labels_mask):
# kl = prior_log_variance - posterior_log_variance - 0.5
# kl += 0.5 * ((prior_latents - prior_means) ** 2) * torch.exp(-2.0 * prior_log_variance)
# kl = torch.sum(kl * labels_mask)
# loss = kl / torch.sum(labels_mask)
# return loss
def get_state_grad_loss(k1=True,
mel=True,
duration=True,
generator=True,
discriminator=True):
return {'k1':k1,'mel':mel,'duration':duration,'generator':generator,'discriminator':discriminator}
def clip_grad_value_(parameters, clip_value, norm_type=2):
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
norm_type = float(norm_type)
if clip_value is not None:
clip_value = float(clip_value)
total_norm = 0
for p in parameters:
param_norm = p.grad.data.norm(norm_type)
total_norm += param_norm.item() ** norm_type
if clip_value is not None:
p.grad.data.clamp_(min=-clip_value, max=clip_value)
total_norm = total_norm ** (1. / norm_type)
return total_norm
class VitsModel(VitsPreTrainedModel):
def __init__(self, config: VitsConfig):
super().__init__(config)
self.config = config
self.text_encoder = VitsTextEncoder(config)
self.flow = VitsResidualCouplingBlock(config)
self.decoder = VitsHifiGan(config)
if config.use_stochastic_duration_prediction:
self.duration_predictor = VitsStochasticDurationPredictor(config)
else:
self.duration_predictor = VitsDurationPredictor(config)
if config.num_speakers > 1:
self.embed_speaker = nn.Embedding(config.num_speakers, config.speaker_embedding_size)
# This is used only for training.
self.posterior_encoder = VitsPosteriorEncoder(config)
self.discriminator = VitsDiscriminator(config)
# These parameters control the synthesised speech properties
self.speaking_rate = config.speaking_rate
self.noise_scale = config.noise_scale
self.noise_scale_duration = config.noise_scale_duration
self.segment_size = self.config.segment_size // self.config.hop_length
# Initialize weights and apply final processing
self.post_init()
self.monotonic_alignment_function=self.monotonic_align_max_path
#....................................
def setMfA(self,fn):
self.monotonic_alignment_function=fn
def monotonic_align_max_path(self,log_likelihoods, mask):
# used for training - awfully slow
# an alternative is proposed in examples/pytorch/text-to-speech/run_vits_finetuning.py
path = torch.zeros_like(log_likelihoods)
text_length_maxs = mask.sum(1)[:, 0]
latent_length_maxs = mask.sum(2)[:, 0]
indexes = latent_length_maxs - 1
max_neg_val = -1e9
for batch_id in range(len(path)):
index = int(indexes[batch_id].item())
text_length_max = int(text_length_maxs[batch_id].item())
latent_length_max = int(latent_length_maxs[batch_id].item())
for y in range(text_length_max):
for x in range(max(0, latent_length_max + y - text_length_max), min(latent_length_max, y + 1)):
if x == y:
v_cur = max_neg_val
else:
v_cur = log_likelihoods[batch_id, y - 1, x]
if x == 0:
if y == 0:
v_prev = 0.0
else:
v_prev = max_neg_val
else:
v_prev = log_likelihoods[batch_id, y - 1, x - 1]
log_likelihoods[batch_id, y, x] += max(v_prev, v_cur)
for y in range(text_length_max - 1, -1, -1):
path[batch_id, y, index] = 1
if index != 0 and (
index == y or log_likelihoods[batch_id, y - 1, index] < log_likelihoods[batch_id, y - 1, index - 1]
):
index = index - 1
return path
#....................................
def slice_segments(self,hidden_states, ids_str, segment_size=4):
batch_size, channels, _ = hidden_states.shape
# 1d tensor containing the indices to keep
indices = torch.arange(segment_size).to(ids_str.device)
# extend the indices to match the shape of hidden_states
indices = indices.view(1, 1, -1).expand(batch_size, channels, -1)
# offset indices with ids_str
indices = indices + ids_str.view(-1, 1, 1)
# gather indices
output = torch.gather(hidden_states, dim=2, index=indices)
return output
#....................................
def rand_slice_segments(self,hidden_states, sample_lengths=None, segment_size=4):
batch_size, _, seq_len = hidden_states.size()
if sample_lengths is None:
sample_lengths = seq_len
ids_str_max = sample_lengths - segment_size + 1
ids_str = (torch.rand([batch_size]).to(device=hidden_states.device) * ids_str_max).to(dtype=torch.long)
ret = self.slice_segments(hidden_states, ids_str, segment_size)
return ret, ids_str
#....................................
def resize_speaker_embeddings(
self,
new_num_speakers: int,
speaker_embedding_size: Optional[int] = None,
pad_to_multiple_of: Optional[int] = 2,
):
if pad_to_multiple_of is not None:
new_num_speakers = ((new_num_speakers + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of
# first, take care of embed_speaker
if self.config.num_speakers <= 1:
if speaker_embedding_size is None:
raise ValueError(
"The current model had no previous speaker embedding, but `speaker_embedding_size` is not specified. Pass `speaker_embedding_size` to this method."
)
# create new embedding layer
new_embeddings = nn.Embedding(
new_num_speakers,
speaker_embedding_size,
device=self.device,
)
# initialize all new embeddings
self._init_weights(new_embeddings)
else:
new_embeddings = self._get_resized_embeddings(self.embed_speaker, new_num_speakers)
self.embed_speaker = new_embeddings
# then take care of sub-models
self.flow.resize_speaker_embeddings(speaker_embedding_size)
for flow in self.flow.flows:
self._init_weights(flow.wavenet.cond_layer)
self.decoder.resize_speaker_embedding(speaker_embedding_size)
self._init_weights(self.decoder.cond)
self.duration_predictor.resize_speaker_embeddings(speaker_embedding_size)
self._init_weights(self.duration_predictor.cond)
self.posterior_encoder.resize_speaker_embeddings(speaker_embedding_size)
self._init_weights(self.posterior_encoder.wavenet.cond_layer)
self.config.num_speakers = new_num_speakers
self.config.speaker_embedding_size = speaker_embedding_size
#....................................
def get_input_embeddings(self):
return self.text_encoder.get_input_embeddings()
#....................................
def set_input_embeddings(self, value):
self.text_encoder.set_input_embeddings(value)
#....................................
def apply_weight_norm(self):
self.decoder.apply_weight_norm()
self.flow.apply_weight_norm()
self.posterior_encoder.apply_weight_norm()
#....................................
def remove_weight_norm(self):
self.decoder.remove_weight_norm()
self.flow.remove_weight_norm()
self.posterior_encoder.remove_weight_norm()
#....................................
def discriminate(self, hidden_states):
return self.discriminator(hidden_states)
#....................................
def get_encoder(self):
return self.text_encoder
#....................................
def _inference_forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
speaker_embeddings: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
padding_mask: Optional[torch.Tensor] = None,
):
text_encoder_output = self.text_encoder(
input_ids=input_ids,
padding_mask=padding_mask,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
hidden_states = hidden_states.transpose(1, 2)
input_padding_mask = padding_mask.transpose(1, 2)
prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
if self.config.use_stochastic_duration_prediction:
log_duration = self.duration_predictor(
hidden_states,
input_padding_mask,
speaker_embeddings,
reverse=True,
noise_scale=self.noise_scale_duration,
)
else:
log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
length_scale = 1.0 / self.speaking_rate
duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()
# Create a padding mask for the output lengths of shape (batch, 1, max_output_length)
indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)
# Reconstruct an attention tensor of shape (batch, 1, out_length, in_length)
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
batch_size, _, output_length, input_length = attn_mask.shape
cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device)
valid_indices = indices.unsqueeze(0) < cum_duration
valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1]
attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask
# Expand prior distribution
prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2)
prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2)
prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale
latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True)
spectrogram = latents * output_padding_mask
waveform = self.decoder(spectrogram, speaker_embeddings)
waveform = waveform.squeeze(1)
sequence_lengths = predicted_lengths * np.prod(self.config.upsample_rates)
if not return_dict:
outputs = (waveform, sequence_lengths, spectrogram) + text_encoder_output[3:]
return outputs
return VitsModelOutput(
waveform=waveform,
sequence_lengths=sequence_lengths,
spectrogram=spectrogram,
hidden_states=text_encoder_output.hidden_states,
attentions=text_encoder_output.attentions,
)
#....................................
def forward_k(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
speaker_id: Optional[int] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.FloatTensor] = None,
labels_attention_mask: Optional[torch.Tensor] = None,
monotonic_alignment_function: Optional[Callable] = None,
) -> Union[Tuple[Any], VitsModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
monotonic_alignment_function = (
self.monotonic_align_max_path if monotonic_alignment_function is None else monotonic_alignment_function
)
if attention_mask is not None:
input_padding_mask = attention_mask.unsqueeze(-1).float()
else:
input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float()
if self.config.num_speakers > 1 and speaker_id is not None:
if isinstance(speaker_id, int):
speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device)
elif isinstance(speaker_id, (list, tuple, np.ndarray)):
speaker_id = torch.tensor(speaker_id, device=self.device)
if not ((0 <= speaker_id).all() and (speaker_id < self.config.num_speakers).all()).item():
raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.")
if not (len(speaker_id) == 1 or len(speaker_id == len(input_ids))):
raise ValueError(
f"You passed {len(speaker_id)} `speaker_id` but you should either pass one speaker id or `batch_size` `speaker_id`."
)
speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1)
else:
speaker_embeddings = None
# if inference, return inference forward of VitsModel
if labels is None:
return self._inference_forward(
input_ids,
attention_mask,
speaker_embeddings,
output_attentions,
output_hidden_states,
return_dict,
input_padding_mask,
)
if labels_attention_mask is not None:
labels_padding_mask = labels_attention_mask.unsqueeze(1).float()
else:
labels_attention_mask = torch.ones((labels.shape[0], labels.shape[2])).float().to(self.device)
labels_padding_mask = labels_attention_mask.unsqueeze(1)
text_encoder_output = self.text_encoder(
input_ids=input_ids,
padding_mask=input_padding_mask,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
hidden_states = hidden_states.transpose(1, 2)
input_padding_mask = input_padding_mask.transpose(1, 2)
prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
latents, posterior_means, posterior_log_variances = self.posterior_encoder(
labels, labels_padding_mask, speaker_embeddings
)
prior_latents = self.flow(latents, labels_padding_mask, speaker_embeddings, reverse=False)
prior_means, prior_log_variances = prior_means.transpose(1, 2), prior_log_variances.transpose(1, 2)
with torch.no_grad():
# negative cross-entropy
# [batch_size, d, latent_length]
prior_variances = torch.exp(-2 * prior_log_variances)
# [batch_size, 1, latent_length]
neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - prior_log_variances, [1], keepdim=True)
# [batch_size, text_length, d] x [batch_size, d, latent_length] = [batch_size, text_length, latent_length]
neg_cent2 = torch.matmul(-0.5 * (prior_latents**2).transpose(1, 2), prior_variances)
# [batch_size, text_length, d] x [batch_size, d, latent_length] = [batch_size, text_length, latent_length]
neg_cent3 = torch.matmul(prior_latents.transpose(1, 2), (prior_means * prior_variances))
# [batch_size, 1, latent_length]
neg_cent4 = torch.sum(-0.5 * (prior_means**2) * prior_variances, [1], keepdim=True)
# [batch_size, text_length, latent_length]
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(labels_padding_mask, -1)
attn = monotonic_alignment_function(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
durations = attn.sum(2)
if self.config.use_stochastic_duration_prediction:
log_duration = self.duration_predictor(
hidden_states, input_padding_mask, speaker_embeddings, durations=durations, reverse=False
)
log_duration = log_duration / torch.sum(input_padding_mask)
else:
log_duration_padded = torch.log(durations + 1e-6) * input_padding_mask
log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
log_duration = torch.sum((log_duration - log_duration_padded) ** 2, [1, 2]) / torch.sum(input_padding_mask)
# expand priors
prior_means = torch.matmul(attn.squeeze(1), prior_means.transpose(1, 2)).transpose(1, 2)
prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances.transpose(1, 2)).transpose(1, 2)
label_lengths = labels_attention_mask.sum(dim=1)
latents_slice, ids_slice = self.rand_slice_segments(latents, label_lengths, segment_size=self.segment_size)
waveform = self.decoder(latents_slice, speaker_embeddings)
if not return_dict:
outputs = (
waveform,
log_duration,
attn,
ids_slice,
input_padding_mask,
labels_padding_mask,
latents,
prior_latents,
prior_means,
prior_log_variances,
posterior_means,
posterior_log_variances,
)
return outputs
return VitsTrainingOutput(
waveform=waveform,
log_duration=log_duration,
attn=attn,
ids_slice=ids_slice,
input_padding_mask=input_padding_mask,
labels_padding_mask=labels_padding_mask,
latents=latents,
prior_latents=prior_latents,
prior_means=prior_means,
prior_log_variances=prior_log_variances,
posterior_means=posterior_means,
posterior_log_variances=posterior_log_variances,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
speaker_id: Optional[int] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.FloatTensor] = None,
labels_attention_mask: Optional[torch.Tensor] = None,
text_encoder_output=None,
posterior_encode_output=None,
monotonic_alignment_function: Optional[Callable] = None,
speaker_embeddings=None
) -> Union[Tuple[Any], VitsModelOutput]:
#output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states# if output_hidden_states is not None else self.config.output_hidden_states
)
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# if attention_mask is not None:
input_padding_mask = attention_mask.unsqueeze(-1).float()
#else:
# input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float()
# speaker_embeddings=None
# if labels_attention_mask is not None:
labels_padding_mask = labels_attention_mask.unsqueeze(1).float()
# else:
# labels_attention_mask = torch.ones((labels.shape[0], labels.shape[2])).float().to(self.device)
# labels_padding_mask = labels_attention_mask.unsqueeze(1)
if text_encoder_output is None:
text_encoder_output = self.text_encoder(
input_ids=input_ids,
padding_mask=input_padding_mask,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
#hidden_states = text_encoder_output[0] #if not return_dict else text_encoder_output.last_hidden_state
hidden_states = text_encoder_output[0].transpose(1, 2)
input_padding_mask = input_padding_mask.transpose(1, 2)
prior_means = text_encoder_output[1].transpose(1, 2) #if not return_dict else text_encoder_output.prior_means
prior_log_variances = text_encoder_output[2].transpose(1, 2) #if not return_dict else text_encoder_output.prior_log_variances
# if posterior_encode_output is None:
# latents, posterior_means, posterior_log_variances = self.posterior_encoder(
# labels, labels_padding_mask, speaker_embeddings
# )
# else:
latents=posterior_encode_output['posterior_latents']
posterior_means=posterior_encode_output['posterior_means']
posterior_log_variances=posterior_encode_output['posterior_log_variances']
prior_latents = self.flow(latents, labels_padding_mask, speaker_embeddings, reverse=False)
# prior_means, prior_log_variances = prior_means.transpose(1, 2), prior_log_variances.transpose(1, 2)
with torch.no_grad():
# negative cross-entropy
# [batch_size, d, latent_length]
prior_variances = torch.exp(-2 * prior_log_variances)
# [batch_size, 1, latent_length]
neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - prior_log_variances, [1], keepdim=True)
# [batch_size, text_length, d] x [batch_size, d, latent_length] = [batch_size, text_length, latent_length]
neg_cent2 = torch.matmul(-0.5 * (prior_latents**2).transpose(1, 2), prior_variances)
# [batch_size, text_length, d] x [batch_size, d, latent_length] = [batch_size, text_length, latent_length]
neg_cent3 = torch.matmul(prior_latents.transpose(1, 2), (prior_means * prior_variances))
# [batch_size, 1, latent_length]
neg_cent4 = torch.sum(-0.5 * (prior_means**2) * prior_variances, [1], keepdim=True)
# [batch_size, text_length, latent_length]
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(labels_padding_mask, -1)
attn = monotonic_alignment_function(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
durations = attn.sum(2)
#if self.config.use_stochastic_duration_prediction:
log_duration = self.duration_predictor(
hidden_states, input_padding_mask, speaker_embeddings, durations=durations, reverse=False
)
log_duration = log_duration / torch.sum(input_padding_mask)
# else:
# log_duration_padded = torch.log(durations + 1e-6) * input_padding_mask
# log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
# log_duration = torch.sum((log_duration - log_duration_padded) ** 2, [1, 2]) / torch.sum(input_padding_mask)
# expand priors
prior_means = torch.matmul(attn.squeeze(1), prior_means.transpose(1, 2)).transpose(1, 2)
prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances.transpose(1, 2)).transpose(1, 2)
label_lengths = labels_attention_mask.sum(dim=1)
latents_slice, ids_slice = self.rand_slice_segments(latents, label_lengths, segment_size=self.segment_size)
waveform = self.decoder(latents_slice, speaker_embeddings)
return waveform,ids_slice,log_duration,prior_latents,posterior_log_variances,prior_means,prior_log_variances,labels_padding_mask
|