ONNXServies / VitsModelSplit /PosteriorDecoderModel.py
wasmdashai's picture
model push
38f004a
import os
import sys
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import set_seed
import wandb
import logging
import copy
from .vits_config import VitsConfig, VitsPreTrainedModel
from .feature_extraction import VitsFeatureExtractor
from .vits_output import PosteriorDecoderModelOutput
from .dataset_features_collector import FeaturesCollectionDataset
from .posterior_encoder import VitsPosteriorEncoder
from .decoder import VitsHifiGan
class PosteriorDecoderModel(torch.nn.Module):
def __init__(self, config,posterior_encoder,decoder,device=None):
super().__init__()
if device:
self.device = device
else:
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.config = copy.deepcopy(config)
self.posterior_encoder = copy.deepcopy(posterior_encoder)
self.decoder = copy.deepcopy(decoder)
if config.num_speakers > 1:
self.embed_speaker = nn.Embedding(config.num_speakers,
config.speaker_embedding_size
)
self.sampling_rate = config.sampling_rate
self.speaking_rate = config.speaking_rate
self.noise_scale = config.noise_scale
self.noise_scale_duration = config.noise_scale_duration
self.segment_size = self.config.segment_size // self.config.hop_length
self.to(self.device)
#....................................
def slice_segments(self,hidden_states, ids_str, segment_size=4):
batch_size, channels, _ = hidden_states.shape
# 1d tensor containing the indices to keep
indices = torch.arange(segment_size).to(ids_str.device)
# extend the indices to match the shape of hidden_states
indices = indices.view(1, 1, -1).expand(batch_size, channels, -1)
# offset indices with ids_str
indices = indices + ids_str.view(-1, 1, 1)
# gather indices
output = torch.gather(hidden_states, dim=2, index=indices)
return output
#....................................
def rand_slice_segments(self,hidden_states, sample_lengths=None, segment_size=4):
batch_size, _, seq_len = hidden_states.size()
if sample_lengths is None:
sample_lengths = seq_len
ids_str_max = sample_lengths - segment_size + 1
ids_str = (torch.rand([batch_size]).to(device=hidden_states.device) * ids_str_max).to(dtype=torch.long)
ret = self.slice_segments(hidden_states, ids_str, segment_size)
return ret, ids_str
#....................................
def forward(
self,
labels: Optional[torch.FloatTensor] = None,
labels_attention_mask: Optional[torch.Tensor] = None,
speaker_id: Optional[int] = None,
return_dict: Optional[bool] = True,
) :
if self.config.num_speakers > 1 and speaker_id is not None:
if isinstance(speaker_id, int):
speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device)
elif isinstance(speaker_id, (list, tuple, np.ndarray)):
speaker_id = torch.tensor(speaker_id, device=self.device)
if not ((0 <= speaker_id).all() and (speaker_id < self.config.num_speakers).all()).item():
raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.")
if not (len(speaker_id) == 1 or len(speaker_id == len(labels))):
raise ValueError(
f"You passed {len(speaker_id)} `speaker_id` but you should either pass one speaker id or `batch_size` `speaker_id`."
)
speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1)
else:
speaker_embeddings = None
if labels_attention_mask is not None:
labels_padding_mask = labels_attention_mask.unsqueeze(1).float()
else:
labels_attention_mask = torch.ones((labels.shape[0], labels.shape[2])).float().to(self.device)
labels_padding_mask = labels_attention_mask.unsqueeze(1)
posterior_latents, posterior_means, posterior_log_variances = self.posterior_encoder(
labels, labels_padding_mask, speaker_embeddings
)
label_lengths = labels_attention_mask.sum(dim=1)
latents_slice, ids_slice = self.rand_slice_segments(posterior_latents,
label_lengths,
segment_size=self.segment_size
)
waveform = self.decoder(latents_slice, speaker_embeddings)
if not return_dict:
outputs = (
labels_padding_mask,
posterior_latents,
posterior_means,
posterior_log_variances,
latents_slice,
ids_slice,
waveform,
)
return outputs
return PosteriorDecoderModelOutput(
labels_padding_mask = labels_padding_mask,
posterior_latents = posterior_latents,
posterior_means = posterior_means,
posterior_log_variances = posterior_log_variances,
latents_slice = latents_slice,
ids_slice = ids_slice,
waveform = waveform,
)
#....................................
def trainer(self,
train_dataset_dir = None,
eval_dataset_dir = None,
full_generation_dir = None,
feature_extractor = VitsFeatureExtractor(),
training_args = None,
full_generation_sample_index= 0,
project_name = "Posterior_Decoder_Finetuning",
wandbKey = "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79",
):
os.makedirs(training_args.output_dir,exist_ok=True)
logger = logging.getLogger(f"{__name__} Training")
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
wandb.login(key= wandbKey)
wandb.init(project= project_name,config = training_args.to_dict())
set_seed(training_args.seed)
# Apply Weight Norm Decoder
self.decoder.apply_weight_norm()
# Save Config
self.config.save_pretrained(training_args.output_dir)
train_dataset = FeaturesCollectionDataset(dataset_dir = train_dataset_dir,
device = self.device
)
eval_dataset = None
if training_args.do_eval:
eval_dataset = FeaturesCollectionDataset(dataset_dir = eval_dataset_dir,
device = self.device
)
full_generation_dataset = FeaturesCollectionDataset(dataset_dir = full_generation_dir,
device = self.device
)
self.full_generation_sample = full_generation_dataset[full_generation_sample_index]
# init optimizer, lr_scheduler
optimizer = torch.optim.AdamW(
self.parameters(),
training_args.learning_rate,
betas=[training_args.adam_beta1, training_args.adam_beta2],
eps=training_args.adam_epsilon,
)
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
optimizer, gamma=training_args.lr_decay, last_epoch=-1
)
logger.info("***** Running training *****")
logger.info(f" Num Epochs = {training_args.num_train_epochs}")
#.......................loop training............................
global_step = 0
for epoch in range(training_args.num_train_epochs):
train_losses_sum = 0
lr_scheduler.step()
for step, batch in enumerate(train_dataset):
# forward through model
outputs = self.forward(
labels=batch["labels"],
labels_attention_mask=batch["labels_attention_mask"],
speaker_id=batch["speaker_id"]
)
mel_scaled_labels = batch["mel_scaled_input_features"]
mel_scaled_target = self.slice_segments(mel_scaled_labels, outputs.ids_slice,self.segment_size)
mel_scaled_generation = feature_extractor._torch_extract_fbank_features(outputs.waveform.squeeze(1))[1]
target_waveform = batch["waveform"].transpose(1, 2)
target_waveform = self.slice_segments(
target_waveform,
outputs.ids_slice * feature_extractor.hop_length,
self.config.segment_size
)
# backpropagate
loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation)
loss = loss_mel.detach().item()
train_losses_sum = train_losses_sum + loss
loss_mel.backward()
optimizer.step()
optimizer.zero_grad()
print(f"TRAINIG - batch {step}, waveform {(batch['waveform'].shape)}, step_loss_mel {loss}, lr {lr_scheduler.get_last_lr()[0]}... ")
global_step +=1
# validation
do_eval = training_args.do_eval and (global_step % training_args.eval_steps == 0)
if do_eval:
logger.info("Running validation... ")
eval_losses_sum = 0
for step, batch in enumerate(eval_dataset):
with torch.no_grad():
outputs = self.forward(
labels=batch["labels"],
labels_attention_mask=batch["labels_attention_mask"],
speaker_id=batch["speaker_id"]
)
mel_scaled_labels = batch["mel_scaled_input_features"]
mel_scaled_target = self.slice_segments(mel_scaled_labels, outputs.ids_slice,self.segment_size)
mel_scaled_generation = feature_extractor._torch_extract_fbank_features(outputs.waveform.squeeze(1))[1]
loss = loss_mel.detach().item()
eval_losses_sum +=loss
loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation)
print(f"VALIDATION - batch {step}, waveform {(batch['waveform'].shape)}, step_loss_mel {loss} ... ")
with torch.no_grad():
full_generation_sample = self.full_generation_sample
full_generation =self.forward(
labels=full_generation_sample["labels"],
labels_attention_mask=full_generation_sample["labels_attention_mask"],
speaker_id=full_generation_sample["speaker_id"]
)
full_generation_waveform = full_generation.waveform.cpu().numpy()
wandb.log({
"eval_losses": eval_losses_sum,
"full generations samples": [
wandb.Audio(w.reshape(-1), caption=f"Full generation sample {epoch}", sample_rate=self.sampling_rate)
for w in full_generation_waveform],})
wandb.log({"train_losses":train_losses_sum})
# add weight norms
self.decoder.remove_weight_norm()
torch.save(self.posterior_encoder.state_dict(), os.path.join(training_args.output_dir,"posterior_encoder.pt"))
torch.save(self.decoder.state_dict(), os.path.join(training_args.output_dir,"decoder.pt"))
logger.info("Running final full generations samples... ")
with torch.no_grad():
full_generation_sample = self.full_generation_sample
full_generation = self.forward(
labels=full_generation_sample["labels"],
labels_attention_mask=full_generation_sample["labels_attention_mask"],
speaker_id=full_generation_sample["speaker_id"]
)
full_generation_waveform = full_generation.waveform.cpu().numpy()
wandb.log({"eval_losses": eval_losses_sum,
"full generations samples": [
wandb.Audio(w.reshape(-1), caption=f"Full generation sample {epoch}",
sample_rate=self.sampling_rate) for w in full_generation_waveform],
})
logger.info("***** Training / Inference Done *****")
#....................................
#....................................