Spaces:
Running
Running
import os | |
import sys | |
from typing import Optional | |
import numpy as np | |
import torch | |
from torch import nn | |
from transformers import set_seed | |
import wandb | |
import logging | |
import copy | |
from .vits_config import VitsConfig, VitsPreTrainedModel | |
from .feature_extraction import VitsFeatureExtractor | |
from .vits_output import PosteriorDecoderModelOutput | |
from .dataset_features_collector import FeaturesCollectionDataset | |
from .posterior_encoder import VitsPosteriorEncoder | |
from .decoder import VitsHifiGan | |
class PosteriorDecoderModel(torch.nn.Module): | |
def __init__(self, config,posterior_encoder,decoder,device=None): | |
super().__init__() | |
if device: | |
self.device = device | |
else: | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
self.config = copy.deepcopy(config) | |
self.posterior_encoder = copy.deepcopy(posterior_encoder) | |
self.decoder = copy.deepcopy(decoder) | |
if config.num_speakers > 1: | |
self.embed_speaker = nn.Embedding(config.num_speakers, | |
config.speaker_embedding_size | |
) | |
self.sampling_rate = config.sampling_rate | |
self.speaking_rate = config.speaking_rate | |
self.noise_scale = config.noise_scale | |
self.noise_scale_duration = config.noise_scale_duration | |
self.segment_size = self.config.segment_size // self.config.hop_length | |
self.to(self.device) | |
#.................................... | |
def slice_segments(self,hidden_states, ids_str, segment_size=4): | |
batch_size, channels, _ = hidden_states.shape | |
# 1d tensor containing the indices to keep | |
indices = torch.arange(segment_size).to(ids_str.device) | |
# extend the indices to match the shape of hidden_states | |
indices = indices.view(1, 1, -1).expand(batch_size, channels, -1) | |
# offset indices with ids_str | |
indices = indices + ids_str.view(-1, 1, 1) | |
# gather indices | |
output = torch.gather(hidden_states, dim=2, index=indices) | |
return output | |
#.................................... | |
def rand_slice_segments(self,hidden_states, sample_lengths=None, segment_size=4): | |
batch_size, _, seq_len = hidden_states.size() | |
if sample_lengths is None: | |
sample_lengths = seq_len | |
ids_str_max = sample_lengths - segment_size + 1 | |
ids_str = (torch.rand([batch_size]).to(device=hidden_states.device) * ids_str_max).to(dtype=torch.long) | |
ret = self.slice_segments(hidden_states, ids_str, segment_size) | |
return ret, ids_str | |
#.................................... | |
def forward( | |
self, | |
labels: Optional[torch.FloatTensor] = None, | |
labels_attention_mask: Optional[torch.Tensor] = None, | |
speaker_id: Optional[int] = None, | |
return_dict: Optional[bool] = True, | |
) : | |
if self.config.num_speakers > 1 and speaker_id is not None: | |
if isinstance(speaker_id, int): | |
speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device) | |
elif isinstance(speaker_id, (list, tuple, np.ndarray)): | |
speaker_id = torch.tensor(speaker_id, device=self.device) | |
if not ((0 <= speaker_id).all() and (speaker_id < self.config.num_speakers).all()).item(): | |
raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.") | |
if not (len(speaker_id) == 1 or len(speaker_id == len(labels))): | |
raise ValueError( | |
f"You passed {len(speaker_id)} `speaker_id` but you should either pass one speaker id or `batch_size` `speaker_id`." | |
) | |
speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1) | |
else: | |
speaker_embeddings = None | |
if labels_attention_mask is not None: | |
labels_padding_mask = labels_attention_mask.unsqueeze(1).float() | |
else: | |
labels_attention_mask = torch.ones((labels.shape[0], labels.shape[2])).float().to(self.device) | |
labels_padding_mask = labels_attention_mask.unsqueeze(1) | |
posterior_latents, posterior_means, posterior_log_variances = self.posterior_encoder( | |
labels, labels_padding_mask, speaker_embeddings | |
) | |
label_lengths = labels_attention_mask.sum(dim=1) | |
latents_slice, ids_slice = self.rand_slice_segments(posterior_latents, | |
label_lengths, | |
segment_size=self.segment_size | |
) | |
waveform = self.decoder(latents_slice, speaker_embeddings) | |
if not return_dict: | |
outputs = ( | |
labels_padding_mask, | |
posterior_latents, | |
posterior_means, | |
posterior_log_variances, | |
latents_slice, | |
ids_slice, | |
waveform, | |
) | |
return outputs | |
return PosteriorDecoderModelOutput( | |
labels_padding_mask = labels_padding_mask, | |
posterior_latents = posterior_latents, | |
posterior_means = posterior_means, | |
posterior_log_variances = posterior_log_variances, | |
latents_slice = latents_slice, | |
ids_slice = ids_slice, | |
waveform = waveform, | |
) | |
#.................................... | |
def trainer(self, | |
train_dataset_dir = None, | |
eval_dataset_dir = None, | |
full_generation_dir = None, | |
feature_extractor = VitsFeatureExtractor(), | |
training_args = None, | |
full_generation_sample_index= 0, | |
project_name = "Posterior_Decoder_Finetuning", | |
wandbKey = "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79", | |
): | |
os.makedirs(training_args.output_dir,exist_ok=True) | |
logger = logging.getLogger(f"{__name__} Training") | |
log_level = training_args.get_process_log_level() | |
logger.setLevel(log_level) | |
wandb.login(key= wandbKey) | |
wandb.init(project= project_name,config = training_args.to_dict()) | |
set_seed(training_args.seed) | |
# Apply Weight Norm Decoder | |
self.decoder.apply_weight_norm() | |
# Save Config | |
self.config.save_pretrained(training_args.output_dir) | |
train_dataset = FeaturesCollectionDataset(dataset_dir = train_dataset_dir, | |
device = self.device | |
) | |
eval_dataset = None | |
if training_args.do_eval: | |
eval_dataset = FeaturesCollectionDataset(dataset_dir = eval_dataset_dir, | |
device = self.device | |
) | |
full_generation_dataset = FeaturesCollectionDataset(dataset_dir = full_generation_dir, | |
device = self.device | |
) | |
self.full_generation_sample = full_generation_dataset[full_generation_sample_index] | |
# init optimizer, lr_scheduler | |
optimizer = torch.optim.AdamW( | |
self.parameters(), | |
training_args.learning_rate, | |
betas=[training_args.adam_beta1, training_args.adam_beta2], | |
eps=training_args.adam_epsilon, | |
) | |
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR( | |
optimizer, gamma=training_args.lr_decay, last_epoch=-1 | |
) | |
logger.info("***** Running training *****") | |
logger.info(f" Num Epochs = {training_args.num_train_epochs}") | |
#.......................loop training............................ | |
global_step = 0 | |
for epoch in range(training_args.num_train_epochs): | |
train_losses_sum = 0 | |
lr_scheduler.step() | |
for step, batch in enumerate(train_dataset): | |
# forward through model | |
outputs = self.forward( | |
labels=batch["labels"], | |
labels_attention_mask=batch["labels_attention_mask"], | |
speaker_id=batch["speaker_id"] | |
) | |
mel_scaled_labels = batch["mel_scaled_input_features"] | |
mel_scaled_target = self.slice_segments(mel_scaled_labels, outputs.ids_slice,self.segment_size) | |
mel_scaled_generation = feature_extractor._torch_extract_fbank_features(outputs.waveform.squeeze(1))[1] | |
target_waveform = batch["waveform"].transpose(1, 2) | |
target_waveform = self.slice_segments( | |
target_waveform, | |
outputs.ids_slice * feature_extractor.hop_length, | |
self.config.segment_size | |
) | |
# backpropagate | |
loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation) | |
loss = loss_mel.detach().item() | |
train_losses_sum = train_losses_sum + loss | |
loss_mel.backward() | |
optimizer.step() | |
optimizer.zero_grad() | |
print(f"TRAINIG - batch {step}, waveform {(batch['waveform'].shape)}, step_loss_mel {loss}, lr {lr_scheduler.get_last_lr()[0]}... ") | |
global_step +=1 | |
# validation | |
do_eval = training_args.do_eval and (global_step % training_args.eval_steps == 0) | |
if do_eval: | |
logger.info("Running validation... ") | |
eval_losses_sum = 0 | |
for step, batch in enumerate(eval_dataset): | |
with torch.no_grad(): | |
outputs = self.forward( | |
labels=batch["labels"], | |
labels_attention_mask=batch["labels_attention_mask"], | |
speaker_id=batch["speaker_id"] | |
) | |
mel_scaled_labels = batch["mel_scaled_input_features"] | |
mel_scaled_target = self.slice_segments(mel_scaled_labels, outputs.ids_slice,self.segment_size) | |
mel_scaled_generation = feature_extractor._torch_extract_fbank_features(outputs.waveform.squeeze(1))[1] | |
loss = loss_mel.detach().item() | |
eval_losses_sum +=loss | |
loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation) | |
print(f"VALIDATION - batch {step}, waveform {(batch['waveform'].shape)}, step_loss_mel {loss} ... ") | |
with torch.no_grad(): | |
full_generation_sample = self.full_generation_sample | |
full_generation =self.forward( | |
labels=full_generation_sample["labels"], | |
labels_attention_mask=full_generation_sample["labels_attention_mask"], | |
speaker_id=full_generation_sample["speaker_id"] | |
) | |
full_generation_waveform = full_generation.waveform.cpu().numpy() | |
wandb.log({ | |
"eval_losses": eval_losses_sum, | |
"full generations samples": [ | |
wandb.Audio(w.reshape(-1), caption=f"Full generation sample {epoch}", sample_rate=self.sampling_rate) | |
for w in full_generation_waveform],}) | |
wandb.log({"train_losses":train_losses_sum}) | |
# add weight norms | |
self.decoder.remove_weight_norm() | |
torch.save(self.posterior_encoder.state_dict(), os.path.join(training_args.output_dir,"posterior_encoder.pt")) | |
torch.save(self.decoder.state_dict(), os.path.join(training_args.output_dir,"decoder.pt")) | |
logger.info("Running final full generations samples... ") | |
with torch.no_grad(): | |
full_generation_sample = self.full_generation_sample | |
full_generation = self.forward( | |
labels=full_generation_sample["labels"], | |
labels_attention_mask=full_generation_sample["labels_attention_mask"], | |
speaker_id=full_generation_sample["speaker_id"] | |
) | |
full_generation_waveform = full_generation.waveform.cpu().numpy() | |
wandb.log({"eval_losses": eval_losses_sum, | |
"full generations samples": [ | |
wandb.Audio(w.reshape(-1), caption=f"Full generation sample {epoch}", | |
sample_rate=self.sampling_rate) for w in full_generation_waveform], | |
}) | |
logger.info("***** Training / Inference Done *****") | |
#.................................... | |
#.................................... | |