wasmdashai commited on
Commit
138ab6b
·
verified ·
1 Parent(s): c0d0a56

Update VitsModelSplit/vits_models_only_decoder.py

Browse files
VitsModelSplit/vits_models_only_decoder.py CHANGED
@@ -1,274 +1,331 @@
1
-
2
- import numpy as np
3
- import torch
4
- from torch import nn
5
- import math
6
- from typing import Any, Callable, Optional, Tuple, Union
7
- from torch.cuda.amp import autocast, GradScaler
8
-
9
- from .vits_config import VitsConfig,VitsPreTrainedModel
10
- from .flow import VitsResidualCouplingBlock
11
- from .duration_predictor import VitsDurationPredictor, VitsStochasticDurationPredictor
12
- from .encoder import VitsTextEncoder
13
- from .decoder import VitsHifiGan
14
- from .posterior_encoder import VitsPosteriorEncoder
15
- from .discriminator import VitsDiscriminator
16
- from .vits_output import VitsModelOutput, VitsTrainingOutput
17
-
18
-
19
- class Vits_models_only_decoder(VitsPreTrainedModel):
20
-
21
- def __init__(self, config: VitsConfig):
22
- super().__init__(config)
23
-
24
- self.config = config
25
- self.text_encoder = VitsTextEncoder(config)
26
- self.flow = VitsResidualCouplingBlock(config)
27
- self.decoder = VitsHifiGan(config)
28
-
29
-
30
-
31
- if config.use_stochastic_duration_prediction:
32
- self.duration_predictor = VitsStochasticDurationPredictor(config)
33
- else:
34
- self.duration_predictor = VitsDurationPredictor(config)
35
-
36
- if config.num_speakers > 1:
37
- self.embed_speaker = nn.Embedding(config.num_speakers, config.speaker_embedding_size)
38
-
39
- # This is used only for training.
40
- self.posterior_encoder = VitsPosteriorEncoder(config)
41
- self.discriminator = VitsDiscriminator(config)
42
-
43
- # These parameters control the synthesised speech properties
44
- self.speaking_rate = config.speaking_rate
45
- self.noise_scale = config.noise_scale
46
- self.noise_scale_duration = config.noise_scale_duration
47
- self.segment_size = self.config.segment_size // self.config.hop_length
48
-
49
- # Initialize weights and apply final processing
50
- self.post_init()
51
-
52
-
53
- #....................................
54
-
55
- def monotonic_align_max_path(self,log_likelihoods, mask):
56
- # used for training - awfully slow
57
- # an alternative is proposed in examples/pytorch/text-to-speech/run_vits_finetuning.py
58
- path = torch.zeros_like(log_likelihoods)
59
-
60
- text_length_maxs = mask.sum(1)[:, 0]
61
- latent_length_maxs = mask.sum(2)[:, 0]
62
-
63
- indexes = latent_length_maxs - 1
64
-
65
- max_neg_val = -1e9
66
-
67
- for batch_id in range(len(path)):
68
- index = int(indexes[batch_id].item())
69
- text_length_max = int(text_length_maxs[batch_id].item())
70
- latent_length_max = int(latent_length_maxs[batch_id].item())
71
-
72
- for y in range(text_length_max):
73
- for x in range(max(0, latent_length_max + y - text_length_max), min(latent_length_max, y + 1)):
74
- if x == y:
75
- v_cur = max_neg_val
76
- else:
77
- v_cur = log_likelihoods[batch_id, y - 1, x]
78
- if x == 0:
79
- if y == 0:
80
- v_prev = 0.0
81
- else:
82
- v_prev = max_neg_val
83
- else:
84
- v_prev = log_likelihoods[batch_id, y - 1, x - 1]
85
- log_likelihoods[batch_id, y, x] += max(v_prev, v_cur)
86
-
87
- for y in range(text_length_max - 1, -1, -1):
88
- path[batch_id, y, index] = 1
89
- if index != 0 and (
90
- index == y or log_likelihoods[batch_id, y - 1, index] < log_likelihoods[batch_id, y - 1, index - 1]
91
- ):
92
- index = index - 1
93
- return path
94
-
95
- #....................................
96
-
97
- def slice_segments(self,hidden_states, ids_str, segment_size=4):
98
-
99
- batch_size, channels, _ = hidden_states.shape
100
- # 1d tensor containing the indices to keep
101
- indices = torch.arange(segment_size).to(ids_str.device)
102
- # extend the indices to match the shape of hidden_states
103
- indices = indices.view(1, 1, -1).expand(batch_size, channels, -1)
104
- # offset indices with ids_str
105
- indices = indices + ids_str.view(-1, 1, 1)
106
- # gather indices
107
- output = torch.gather(hidden_states, dim=2, index=indices)
108
-
109
- return output
110
-
111
-
112
- #....................................
113
-
114
-
115
- def rand_slice_segments(self,hidden_states, sample_lengths=None, segment_size=4):
116
-
117
- batch_size, _, seq_len = hidden_states.size()
118
- if sample_lengths is None:
119
- sample_lengths = seq_len
120
- ids_str_max = sample_lengths - segment_size + 1
121
- ids_str = (torch.rand([batch_size]).to(device=hidden_states.device) * ids_str_max).to(dtype=torch.long)
122
- ret = self.slice_segments(hidden_states, ids_str, segment_size)
123
-
124
- return ret, ids_str
125
-
126
- #....................................
127
-
128
- def resize_speaker_embeddings(
129
- self,
130
- new_num_speakers: int,
131
- speaker_embedding_size: Optional[int] = None,
132
- pad_to_multiple_of: Optional[int] = 2,
133
- ):
134
- if pad_to_multiple_of is not None:
135
- new_num_speakers = ((new_num_speakers + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of
136
-
137
- # first, take care of embed_speaker
138
- if self.config.num_speakers <= 1:
139
- if speaker_embedding_size is None:
140
- raise ValueError(
141
- "The current model had no previous speaker embedding, but `speaker_embedding_size` is not specified. Pass `speaker_embedding_size` to this method."
142
- )
143
- # create new embedding layer
144
- new_embeddings = nn.Embedding(
145
- new_num_speakers,
146
- speaker_embedding_size,
147
- device=self.device,
148
- )
149
- # initialize all new embeddings
150
- self._init_weights(new_embeddings)
151
- else:
152
- new_embeddings = self._get_resized_embeddings(self.embed_speaker, new_num_speakers)
153
-
154
- self.embed_speaker = new_embeddings
155
-
156
- # then take care of sub-models
157
- self.flow.resize_speaker_embeddings(speaker_embedding_size)
158
- for flow in self.flow.flows:
159
- self._init_weights(flow.wavenet.cond_layer)
160
-
161
- self.decoder.resize_speaker_embedding(speaker_embedding_size)
162
- self._init_weights(self.decoder.cond)
163
-
164
- self.duration_predictor.resize_speaker_embeddings(speaker_embedding_size)
165
- self._init_weights(self.duration_predictor.cond)
166
-
167
- self.posterior_encoder.resize_speaker_embeddings(speaker_embedding_size)
168
- self._init_weights(self.posterior_encoder.wavenet.cond_layer)
169
-
170
- self.config.num_speakers = new_num_speakers
171
- self.config.speaker_embedding_size = speaker_embedding_size
172
-
173
- #....................................
174
-
175
- def get_input_embeddings(self):
176
- return self.text_encoder.get_input_embeddings()
177
-
178
- #....................................
179
-
180
- def set_input_embeddings(self, value):
181
- self.text_encoder.set_input_embeddings(value)
182
-
183
- #....................................
184
-
185
- def apply_weight_norm(self):
186
- self.decoder.apply_weight_norm()
187
- self.flow.apply_weight_norm()
188
- self.posterior_encoder.apply_weight_norm()
189
-
190
- #....................................
191
-
192
- def remove_weight_norm(self):
193
- self.decoder.remove_weight_norm()
194
- self.flow.remove_weight_norm()
195
- self.posterior_encoder.remove_weight_norm()
196
-
197
- #....................................
198
-
199
- def discriminate(self, hidden_states):
200
- return self.discriminator(hidden_states)
201
-
202
- #....................................
203
-
204
- def get_encoder(self):
205
- return self.text_encoder
206
-
207
- #....................................
208
-
209
- def _inference_forward(
210
- self,
211
- input_ids: Optional[torch.Tensor] = None,
212
- attention_mask: Optional[torch.Tensor] = None,
213
- speaker_embeddings: Optional[torch.Tensor] = None,
214
- output_attentions: Optional[bool] = None,
215
- output_hidden_states: Optional[bool] = None,
216
- return_dict: Optional[bool] = None,
217
- padding_mask: Optional[torch.Tensor] = None,
218
- ):
219
- text_encoder_output = self.text_encoder(
220
- input_ids=input_ids,
221
- padding_mask=padding_mask,
222
- attention_mask=attention_mask,
223
- output_attentions=output_attentions,
224
- output_hidden_states=output_hidden_states,
225
- return_dict=return_dict,
226
- )
227
- hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
228
- hidden_states = hidden_states.transpose(1, 2)
229
- input_padding_mask = padding_mask.transpose(1, 2)
230
-
231
- prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
232
- prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
233
-
234
- if self.config.use_stochastic_duration_prediction:
235
- log_duration = self.duration_predictor(
236
- hidden_states,
237
- input_padding_mask,
238
- speaker_embeddings,
239
- reverse=True,
240
- noise_scale=self.noise_scale_duration,
241
- )
242
- else:
243
- log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
244
-
245
- length_scale = 1.0 / self.speaking_rate
246
- duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
247
- predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()
248
-
249
-
250
- # Create a padding mask for the output lengths of shape (batch, 1, max_output_length)
251
- indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
252
- output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
253
- output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)
254
-
255
- # Reconstruct an attention tensor of shape (batch, 1, out_length, in_length)
256
- attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
257
- batch_size, _, output_length, input_length = attn_mask.shape
258
- cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
259
- indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device)
260
- valid_indices = indices.unsqueeze(0) < cum_duration
261
- valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
262
- padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1]
263
- attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask
264
-
265
- # Expand prior distribution
266
- prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2)
267
- prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2)
268
-
269
- prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale
270
- latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True)
271
-
272
- spectrogram = latents * output_padding_mask
273
- return spectrogram
274
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import numpy as np
3
+ import torch
4
+ from torch import nn
5
+ import math
6
+ from typing import Any, Callable, Optional, Tuple, Union
7
+ from torch.cuda.amp import autocast, GradScaler
8
+
9
+ from .vits_config import VitsConfig,VitsPreTrainedModel
10
+ from .flow import VitsResidualCouplingBlock
11
+ from .duration_predictor import VitsDurationPredictor, VitsStochasticDurationPredictor
12
+ from .encoder import VitsTextEncoder
13
+ from .decoder import VitsHifiGan
14
+ from .posterior_encoder import VitsPosteriorEncoder
15
+ from .discriminator import VitsDiscriminator
16
+ from .vits_output import VitsModelOutput, VitsTrainingOutput
17
+
18
+
19
+ class Vits_models_only_decoder(VitsPreTrainedModel):
20
+
21
+ def __init__(self, config: VitsConfig):
22
+ super().__init__(config)
23
+
24
+ self.config = config
25
+ self.text_encoder = VitsTextEncoder(config)
26
+ self.flow = VitsResidualCouplingBlock(config)
27
+ self.decoder = VitsHifiGan(config)
28
+
29
+
30
+
31
+ if config.use_stochastic_duration_prediction:
32
+ self.duration_predictor = VitsStochasticDurationPredictor(config)
33
+ else:
34
+ self.duration_predictor = VitsDurationPredictor(config)
35
+
36
+ if config.num_speakers > 1:
37
+ self.embed_speaker = nn.Embedding(config.num_speakers, config.speaker_embedding_size)
38
+
39
+ # This is used only for training.
40
+ self.posterior_encoder = VitsPosteriorEncoder(config)
41
+ self.discriminator = VitsDiscriminator(config)
42
+
43
+ # These parameters control the synthesised speech properties
44
+ self.speaking_rate = config.speaking_rate
45
+ self.noise_scale = config.noise_scale
46
+ self.noise_scale_duration = config.noise_scale_duration
47
+ self.segment_size = self.config.segment_size // self.config.hop_length
48
+
49
+ # Initialize weights and apply final processing
50
+ self.post_init()
51
+
52
+
53
+ #....................................
54
+
55
+ def monotonic_align_max_path(self,log_likelihoods, mask):
56
+ # used for training - awfully slow
57
+ # an alternative is proposed in examples/pytorch/text-to-speech/run_vits_finetuning.py
58
+ path = torch.zeros_like(log_likelihoods)
59
+
60
+ text_length_maxs = mask.sum(1)[:, 0]
61
+ latent_length_maxs = mask.sum(2)[:, 0]
62
+
63
+ indexes = latent_length_maxs - 1
64
+
65
+ max_neg_val = -1e9
66
+
67
+ for batch_id in range(len(path)):
68
+ index = int(indexes[batch_id].item())
69
+ text_length_max = int(text_length_maxs[batch_id].item())
70
+ latent_length_max = int(latent_length_maxs[batch_id].item())
71
+
72
+ for y in range(text_length_max):
73
+ for x in range(max(0, latent_length_max + y - text_length_max), min(latent_length_max, y + 1)):
74
+ if x == y:
75
+ v_cur = max_neg_val
76
+ else:
77
+ v_cur = log_likelihoods[batch_id, y - 1, x]
78
+ if x == 0:
79
+ if y == 0:
80
+ v_prev = 0.0
81
+ else:
82
+ v_prev = max_neg_val
83
+ else:
84
+ v_prev = log_likelihoods[batch_id, y - 1, x - 1]
85
+ log_likelihoods[batch_id, y, x] += max(v_prev, v_cur)
86
+
87
+ for y in range(text_length_max - 1, -1, -1):
88
+ path[batch_id, y, index] = 1
89
+ if index != 0 and (
90
+ index == y or log_likelihoods[batch_id, y - 1, index] < log_likelihoods[batch_id, y - 1, index - 1]
91
+ ):
92
+ index = index - 1
93
+ return path
94
+
95
+ #....................................
96
+
97
+ def slice_segments(self,hidden_states, ids_str, segment_size=4):
98
+
99
+ batch_size, channels, _ = hidden_states.shape
100
+ # 1d tensor containing the indices to keep
101
+ indices = torch.arange(segment_size).to(ids_str.device)
102
+ # extend the indices to match the shape of hidden_states
103
+ indices = indices.view(1, 1, -1).expand(batch_size, channels, -1)
104
+ # offset indices with ids_str
105
+ indices = indices + ids_str.view(-1, 1, 1)
106
+ # gather indices
107
+ output = torch.gather(hidden_states, dim=2, index=indices)
108
+
109
+ return output
110
+
111
+
112
+ #....................................
113
+
114
+
115
+ def rand_slice_segments(self,hidden_states, sample_lengths=None, segment_size=4):
116
+
117
+ batch_size, _, seq_len = hidden_states.size()
118
+ if sample_lengths is None:
119
+ sample_lengths = seq_len
120
+ ids_str_max = sample_lengths - segment_size + 1
121
+ ids_str = (torch.rand([batch_size]).to(device=hidden_states.device) * ids_str_max).to(dtype=torch.long)
122
+ ret = self.slice_segments(hidden_states, ids_str, segment_size)
123
+
124
+ return ret, ids_str
125
+
126
+ #....................................
127
+
128
+ def resize_speaker_embeddings(
129
+ self,
130
+ new_num_speakers: int,
131
+ speaker_embedding_size: Optional[int] = None,
132
+ pad_to_multiple_of: Optional[int] = 2,
133
+ ):
134
+ if pad_to_multiple_of is not None:
135
+ new_num_speakers = ((new_num_speakers + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of
136
+
137
+ # first, take care of embed_speaker
138
+ if self.config.num_speakers <= 1:
139
+ if speaker_embedding_size is None:
140
+ raise ValueError(
141
+ "The current model had no previous speaker embedding, but `speaker_embedding_size` is not specified. Pass `speaker_embedding_size` to this method."
142
+ )
143
+ # create new embedding layer
144
+ new_embeddings = nn.Embedding(
145
+ new_num_speakers,
146
+ speaker_embedding_size,
147
+ device=self.device,
148
+ )
149
+ # initialize all new embeddings
150
+ self._init_weights(new_embeddings)
151
+ else:
152
+ new_embeddings = self._get_resized_embeddings(self.embed_speaker, new_num_speakers)
153
+
154
+ self.embed_speaker = new_embeddings
155
+
156
+ # then take care of sub-models
157
+ self.flow.resize_speaker_embeddings(speaker_embedding_size)
158
+ for flow in self.flow.flows:
159
+ self._init_weights(flow.wavenet.cond_layer)
160
+
161
+ self.decoder.resize_speaker_embedding(speaker_embedding_size)
162
+ self._init_weights(self.decoder.cond)
163
+
164
+ self.duration_predictor.resize_speaker_embeddings(speaker_embedding_size)
165
+ self._init_weights(self.duration_predictor.cond)
166
+
167
+ self.posterior_encoder.resize_speaker_embeddings(speaker_embedding_size)
168
+ self._init_weights(self.posterior_encoder.wavenet.cond_layer)
169
+
170
+ self.config.num_speakers = new_num_speakers
171
+ self.config.speaker_embedding_size = speaker_embedding_size
172
+
173
+ #....................................
174
+
175
+ def get_input_embeddings(self):
176
+ return self.text_encoder.get_input_embeddings()
177
+
178
+ #....................................
179
+
180
+ def set_input_embeddings(self, value):
181
+ self.text_encoder.set_input_embeddings(value)
182
+
183
+ #....................................
184
+
185
+ def apply_weight_norm(self):
186
+ self.decoder.apply_weight_norm()
187
+ self.flow.apply_weight_norm()
188
+ self.posterior_encoder.apply_weight_norm()
189
+
190
+ #....................................
191
+
192
+ def remove_weight_norm(self):
193
+ self.decoder.remove_weight_norm()
194
+ self.flow.remove_weight_norm()
195
+ self.posterior_encoder.remove_weight_norm()
196
+
197
+ #....................................
198
+
199
+ def discriminate(self, hidden_states):
200
+ return self.discriminator(hidden_states)
201
+
202
+ #....................................
203
+
204
+ def get_encoder(self):
205
+ return self.text_encoder
206
+
207
+ #....................................
208
+
209
+ def _inference_forward(
210
+ self,
211
+ input_ids: Optional[torch.Tensor] = None,
212
+ attention_mask: Optional[torch.Tensor] = None,
213
+ speaker_embeddings: Optional[torch.Tensor] = None,
214
+ output_attentions: Optional[bool] = None,
215
+ output_hidden_states: Optional[bool] = None,
216
+ return_dict: Optional[bool] = None,
217
+ padding_mask: Optional[torch.Tensor] = None,
218
+ ):
219
+ text_encoder_output = self.text_encoder(
220
+ input_ids=input_ids,
221
+ padding_mask=padding_mask,
222
+ attention_mask=attention_mask,
223
+ output_attentions=output_attentions,
224
+ output_hidden_states=output_hidden_states,
225
+ return_dict=return_dict,
226
+ )
227
+ hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
228
+ hidden_states = hidden_states.transpose(1, 2)
229
+ input_padding_mask = padding_mask.transpose(1, 2)
230
+
231
+ prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
232
+ prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
233
+
234
+ if self.config.use_stochastic_duration_prediction:
235
+ log_duration = self.duration_predictor(
236
+ hidden_states,
237
+ input_padding_mask,
238
+ speaker_embeddings,
239
+ reverse=True,
240
+ noise_scale=self.noise_scale_duration,
241
+ )
242
+ else:
243
+ log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
244
+
245
+ length_scale = 1.0 / self.speaking_rate
246
+ duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
247
+ predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()
248
+
249
+
250
+ # Create a padding mask for the output lengths of shape (batch, 1, max_output_length)
251
+ indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
252
+ output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
253
+ output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)
254
+
255
+ # Reconstruct an attention tensor of shape (batch, 1, out_length, in_length)
256
+ attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
257
+ batch_size, _, output_length, input_length = attn_mask.shape
258
+ cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
259
+ indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device)
260
+ valid_indices = indices.unsqueeze(0) < cum_duration
261
+ valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
262
+ padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1]
263
+ attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask
264
+
265
+ # Expand prior distribution
266
+ prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2)
267
+ prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2)
268
+
269
+ prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale
270
+ latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True)
271
+
272
+ spectrogram = latents * output_padding_mask
273
+ return spectrogram
274
+
275
+ def forward(
276
+ self,
277
+ input_ids: Optional[torch.Tensor] = None,
278
+ attention_mask: Optional[torch.Tensor] = None,
279
+ speaker_id: Optional[int] = None,
280
+ output_attentions: Optional[bool] = None,
281
+ output_hidden_states: Optional[bool] = None,
282
+ return_dict: Optional[bool] = None,
283
+ labels: Optional[torch.FloatTensor] = None,
284
+ labels_attention_mask: Optional[torch.Tensor] = None,
285
+ monotonic_alignment_function: Optional[Callable] = None,
286
+ ) -> Union[Tuple[Any], VitsModelOutput]:
287
+
288
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
289
+ output_hidden_states = (
290
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
291
+ )
292
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
293
+
294
+ monotonic_alignment_function = (
295
+ self.monotonic_align_max_path if monotonic_alignment_function is None else monotonic_alignment_function
296
+ )
297
+
298
+ if attention_mask is not None:
299
+ input_padding_mask = attention_mask.unsqueeze(-1).float()
300
+ else:
301
+ input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float()
302
+
303
+ if self.config.num_speakers > 1 and speaker_id is not None:
304
+ if isinstance(speaker_id, int):
305
+ speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device)
306
+ elif isinstance(speaker_id, (list, tuple, np.ndarray)):
307
+ speaker_id = torch.tensor(speaker_id, device=self.device)
308
+
309
+ if not ((0 <= speaker_id).all() and (speaker_id < self.config.num_speakers).all()).item():
310
+ raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.")
311
+ if not (len(speaker_id) == 1 or len(speaker_id == len(input_ids))):
312
+ raise ValueError(
313
+ f"You passed {len(speaker_id)} `speaker_id` but you should either pass one speaker id or `batch_size` `speaker_id`."
314
+ )
315
+
316
+ speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1)
317
+ else:
318
+ speaker_embeddings = None
319
+
320
+ # if inference, return inference forward of VitsModel
321
+ if labels is None:
322
+ return self._inference_forward(
323
+ input_ids,
324
+ attention_mask,
325
+ speaker_embeddings,
326
+ output_attentions,
327
+ output_hidden_states,
328
+ return_dict,
329
+ input_padding_mask,
330
+ )
331
+