import gradio as gr import tensorflow as tf from transformers import TFGPT2LMHeadModel, GPT2Tokenizer tokenizer = GPT2Tokenizer.from_pretrained("gpt2") model = TFGPT2LMHeadModel.from_pretrained("gpt2", pad_token_id=tokenizer.eos_token_id) #uncomment the lines below if you want to use GPT2-XL instead of GPT2 which would give faster outputs with greater accuracy. #you will have to recomment the above 2 lines if you wanna use GPT2-XL. #tokenizer = GPT2Tokenizer.from_pretrained("gpt2-xl") #model = TFGPT2LMHeadModel.from_pretrained("gpt2-xl", pad_token_id=tokenizer.eos_token_id) def generate_text(inp): input_ids = tokenizer.encode(inp, return_tensors='tf') beam_output = model.generate(input_ids, max_length=100, num_beams=5, no_repeat_ngram_size=2, early_stopping=True) output = tokenizer.decode(beam_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) return ".".join(output.split(".")[:-1]) + "." output_text = gr.outputs.Textbox() gr.Interface(generate_text,"textbox", output_text, title="GPT-2", description="OpenAI's GPT-2 is an unsupervised language model that \ can generate coherent text. Go ahead and input a sentence and see what it completes \ it with! Takes around 30s to run.").launch()