import gradio as gr import torch from diffusers import StableDiffusion3Pipeline # Load the model pipe = StableDiffusion3Pipeline.from_pretrained( "stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16 ) pipe = pipe.to("cuda:1") def generate_image(prompt, negative_prompt, num_inference_steps, guidance_scale): # Generate the image image = pipe( prompt, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale ).images[0] return image # Create the Gradio interface interface = gr.Interface( fn=generate_image, inputs=[ gr.Textbox(label="Prompt"), gr.Textbox(label="Negative Prompt", placeholder="Optional"), gr.Slider(step=1, minimum=1, maximum=100, value=28, label="Number of Inference Steps"), gr.Slider(minimum=1.0, maximum=20.0, step=0.1, value=7.0, label="Guidance Scale") ], outputs="image", title="Stable Diffusion 3 Image Generator", description="Generate images with Stable Diffusion 3. Type a prompt and see the magic!" ) # Launch the interface interface.launch(server_name="0.0.0.0", server_port=8912, inbrowser=True, share=False)