import whisper | |
import os | |
model = whisper.load_model("base") | |
# load audio and pad/trim it to fit 30 seconds | |
audio = whisper.load_audio("./data/ling-voice/0730/073001.m4a") | |
audio = whisper.pad_or_trim(audio) | |
# make log-Mel spectrogram and move to the same device as the model | |
mel = whisper.log_mel_spectrogram(audio).to(model.device) | |
# detect the spoken language | |
_, probs = model.detect_language(mel) | |
print(f"Detected language: {max(probs, key=probs.get)}") | |
# decode the audio | |
options = whisper.DecodingOptions() | |
result = whisper.decode(model, mel, options) | |
# print the recognized text | |
print(result.text) | |