Spaces:
Runtime error
Runtime error
import numpy as np | |
import cv2 | |
from PIL import Image | |
def get_high_freq_colors(image): | |
im = image.getcolors(maxcolors=1024*1024) | |
sorted_colors = sorted(im, key=lambda x: x[0], reverse=True) | |
freqs = [c[0] for c in sorted_colors] | |
mean_freq = sum(freqs) / len(freqs) | |
high_freq_colors = [c for c in sorted_colors if c[0] > max(2, mean_freq)] # Ignore colors that occur very few times (less than 2) or less than half the average frequency | |
return high_freq_colors | |
def color_quantization(image, n_colors): | |
# Get color histogram | |
hist, _ = np.histogramdd(image.reshape(-1, 3), bins=(256, 256, 256), range=((0, 256), (0, 256), (0, 256))) | |
# Get most frequent colors | |
colors = np.argwhere(hist > 0) | |
colors = colors[np.argsort(hist[colors[:, 0], colors[:, 1], colors[:, 2]])[::-1]] | |
colors = colors[:n_colors] | |
# Replace each pixel with the closest color | |
dists = np.sum((image.reshape(-1, 1, 3) - colors.reshape(1, -1, 3))**2, axis=2) | |
labels = np.argmin(dists, axis=1) | |
return colors[labels].reshape((image.shape[0], image.shape[1], 3)).astype(np.uint8) | |
def create_binary_matrix(img_arr, target_color): | |
# Create mask of pixels with target color | |
mask = np.all(img_arr == target_color, axis=-1) | |
# Convert mask to binary matrix | |
binary_matrix = mask.astype(int) | |
from datetime import datetime | |
binary_file_name = f'mask-{datetime.now().timestamp()}.png' | |
cv2.imwrite(binary_file_name, binary_matrix * 255) | |
#binary_matrix = torch.from_numpy(binary_matrix).unsqueeze(0).unsqueeze(0) | |
return binary_file_name |