Spaces:
Runtime error
Runtime error
Linoy Tsaban
commited on
Commit
·
ba508b5
1
Parent(s):
9aade41
Update preprocess_utils.py
Browse files- preprocess_utils.py +290 -145
preprocess_utils.py
CHANGED
@@ -22,158 +22,303 @@ def get_timesteps(scheduler, num_inference_steps, strength, device):
|
|
22 |
timesteps = scheduler.timesteps[t_start:]
|
23 |
|
24 |
return timesteps, num_inference_steps - t_start
|
25 |
-
|
26 |
-
@torch.no_grad()
|
27 |
-
def decode_latents(pipe, latents):
|
28 |
-
decoded = []
|
29 |
-
batch_size = 8
|
30 |
-
for b in range(0, latents.shape[0], batch_size):
|
31 |
-
latents_batch = 1 / 0.18215 * latents[b:b + batch_size]
|
32 |
-
imgs = pipe.vae.decode(latents_batch).sample
|
33 |
-
imgs = (imgs / 2 + 0.5).clamp(0, 1)
|
34 |
-
decoded.append(imgs)
|
35 |
-
return torch.cat(decoded)
|
36 |
-
|
37 |
-
@torch.no_grad()
|
38 |
-
def ddim_inversion(pipe, cond, latent_frames, batch_size, save_latents=True, timesteps_to_save=None):
|
39 |
-
|
40 |
-
timesteps = reversed(pipe.scheduler.timesteps)
|
41 |
-
timesteps_to_save = timesteps_to_save if timesteps_to_save is not None else timesteps
|
42 |
-
for i, t in enumerate(tqdm(timesteps)):
|
43 |
-
for b in range(0, latent_frames.shape[0], batch_size):
|
44 |
-
x_batch = latent_frames[b:b + batch_size]
|
45 |
-
model_input = x_batch
|
46 |
-
cond_batch = cond.repeat(x_batch.shape[0], 1, 1)
|
47 |
-
#remove comment from commented block to support controlnet
|
48 |
-
# if self.sd_version == 'depth':
|
49 |
-
# depth_maps = torch.cat([self.depth_maps[b: b + batch_size]])
|
50 |
-
# model_input = torch.cat([x_batch, depth_maps],dim=1)
|
51 |
-
|
52 |
-
alpha_prod_t = pipe.scheduler.alphas_cumprod[t]
|
53 |
-
alpha_prod_t_prev = (
|
54 |
-
pipe.scheduler.alphas_cumprod[timesteps[i - 1]]
|
55 |
-
if i > 0 else pipe.scheduler.final_alpha_cumprod
|
56 |
-
)
|
57 |
|
58 |
-
mu = alpha_prod_t ** 0.5
|
59 |
-
mu_prev = alpha_prod_t_prev ** 0.5
|
60 |
-
sigma = (1 - alpha_prod_t) ** 0.5
|
61 |
-
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
# if self.sd_version != 'ControlNet':
|
67 |
-
# eps = pipe.unet(model_input, t, encoder_hidden_states=cond_batch).sample
|
68 |
-
# else:
|
69 |
-
# eps = self.controlnet_pred(x_batch, t, cond_batch, torch.cat([self.canny_cond[b: b + batch_size]]))
|
70 |
-
|
71 |
-
pred_x0 = (x_batch - sigma_prev * eps) / mu_prev
|
72 |
-
latent_frames[b:b + batch_size] = mu * pred_x0 + sigma * eps
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
if i < len(timesteps) - 1
|
97 |
-
else pipe.scheduler.final_alpha_cumprod
|
98 |
)
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
#remove line below and replace with commented block to support controlnet
|
105 |
-
eps = pipe.unet(model_input, t, encoder_hidden_states=cond_batch).sample
|
106 |
-
# if self.sd_version != 'ControlNet':
|
107 |
-
# eps = pipe.unet(model_input, t, encoder_hidden_states=cond_batch).sample
|
108 |
-
# else:
|
109 |
-
# eps = self.controlnet_pred(x_batch, t, cond_batch, torch.cat([self.canny_cond[b: b + batch_size]]))
|
110 |
-
|
111 |
-
pred_x0 = (x_batch - sigma * eps) / mu
|
112 |
-
x[b:b + batch_size] = mu_prev * pred_x0 + sigma_prev * eps
|
113 |
-
return x
|
114 |
-
|
115 |
-
|
116 |
-
@torch.no_grad()
|
117 |
-
def get_text_embeds(pipe, prompt, negative_prompt, batch_size=1, device="cuda"):
|
118 |
-
# Tokenize text and get embeddings
|
119 |
-
text_input = pipe.tokenizer(prompt, padding='max_length', max_length=pipe.tokenizer.model_max_length,
|
120 |
-
truncation=True, return_tensors='pt')
|
121 |
-
text_embeddings = pipe.text_encoder(text_input.input_ids.to(pipe.device))[0]
|
122 |
-
|
123 |
-
# Do the same for unconditional embeddings
|
124 |
-
uncond_input = pipe.tokenizer(negative_prompt, padding='max_length', max_length=pipe.tokenizer.model_max_length,
|
125 |
-
return_tensors='pt')
|
126 |
-
|
127 |
-
uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(pipe.device))[0]
|
128 |
-
|
129 |
-
# Cat for final embeddings
|
130 |
-
text_embeddings = torch.cat([uncond_embeddings] * batch_size + [text_embeddings] * batch_size)
|
131 |
-
return text_embeddings
|
132 |
-
|
133 |
-
@torch.no_grad()
|
134 |
-
def extract_latents(pipe,
|
135 |
-
num_steps,
|
136 |
-
latent_frames,
|
137 |
-
batch_size,
|
138 |
-
timesteps_to_save,
|
139 |
-
inversion_prompt=''):
|
140 |
-
pipe.scheduler.set_timesteps(num_steps)
|
141 |
-
cond = get_text_embeds(pipe, inversion_prompt, "", device=pipe.device)[1].unsqueeze(0)
|
142 |
-
# latent_frames = self.latents
|
143 |
-
|
144 |
-
inverted_latents = ddim_inversion(pipe, cond,
|
145 |
-
latent_frames,
|
146 |
-
batch_size=batch_size,
|
147 |
-
save_latents=False,
|
148 |
-
timesteps_to_save=timesteps_to_save)
|
149 |
-
|
150 |
-
# latent_reconstruction = ddim_sample(pipe, inverted_latents, cond, batch_size=batch_size)
|
151 |
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
-
@torch.no_grad()
|
158 |
-
def
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
|
|
22 |
timesteps = scheduler.timesteps[t_start:]
|
23 |
|
24 |
return timesteps, num_inference_steps - t_start
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
class Preprocess(nn.Module):
|
28 |
+
def __init__(self, device, opt, hf_key=None):
|
29 |
+
super().__init__()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
self.device = device
|
32 |
+
self.sd_version = opt["sd_version"]
|
33 |
+
self.use_depth = False
|
34 |
+
self.config = opt
|
35 |
+
|
36 |
+
print(f'[INFO] loading stable diffusion...')
|
37 |
+
if hf_key is not None:
|
38 |
+
print(f'[INFO] using hugging face custom model key: {hf_key}')
|
39 |
+
model_key = hf_key
|
40 |
+
elif self.sd_version == '2.1':
|
41 |
+
model_key = "stabilityai/stable-diffusion-2-1-base"
|
42 |
+
elif self.sd_version == '2.0':
|
43 |
+
model_key = "stabilityai/stable-diffusion-2-base"
|
44 |
+
elif self.sd_version == '1.5' or self.sd_version == 'ControlNet':
|
45 |
+
model_key = "runwayml/stable-diffusion-v1-5"
|
46 |
+
elif self.sd_version == 'depth':
|
47 |
+
model_key = "stabilityai/stable-diffusion-2-depth"
|
48 |
+
else:
|
49 |
+
raise ValueError(f'Stable-diffusion version {self.sd_version} not supported.')
|
50 |
+
self.model_key = model_key
|
51 |
+
# Create model
|
52 |
+
self.vae = AutoencoderKL.from_pretrained(model_key, subfolder="vae", revision="fp16",
|
53 |
+
torch_dtype=torch.float16).to(self.device)
|
54 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(model_key, subfolder="tokenizer")
|
55 |
+
self.text_encoder = CLIPTextModel.from_pretrained(model_key, subfolder="text_encoder", revision="fp16",
|
56 |
+
torch_dtype=torch.float16).to(self.device)
|
57 |
+
self.unet = UNet2DConditionModel.from_pretrained(model_key, subfolder="unet", revision="fp16",
|
58 |
+
torch_dtype=torch.float16).to(self.device)
|
59 |
+
self.total_inverted_latents = {}
|
60 |
+
|
61 |
+
self.paths, self.frames, self.latents = self.get_data(self.config["data_path"], self.config["n_frames"])
|
62 |
+
print("self.frames", self.frames.shape)
|
63 |
+
print("self.latents", self.latents.shape)
|
64 |
+
|
65 |
+
|
66 |
+
if self.sd_version == 'ControlNet':
|
67 |
+
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
|
68 |
+
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16).to(self.device)
|
69 |
+
control_pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
70 |
+
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
|
71 |
+
).to(self.device)
|
72 |
+
self.unet = control_pipe.unet
|
73 |
+
self.controlnet = control_pipe.controlnet
|
74 |
+
self.canny_cond = self.get_canny_cond()
|
75 |
+
elif self.sd_version == 'depth':
|
76 |
+
self.depth_maps = self.prepare_depth_maps()
|
77 |
+
self.scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
|
78 |
+
|
79 |
+
# self.unet.enable_xformers_memory_efficient_attention()
|
80 |
+
print(f'[INFO] loaded stable diffusion!')
|
81 |
+
|
82 |
+
@torch.no_grad()
|
83 |
+
def prepare_depth_maps(self, model_type='DPT_Large', device='cuda'):
|
84 |
+
depth_maps = []
|
85 |
+
midas = torch.hub.load("intel-isl/MiDaS", model_type)
|
86 |
+
midas.to(device)
|
87 |
+
midas.eval()
|
88 |
+
|
89 |
+
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
|
90 |
+
|
91 |
+
if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
|
92 |
+
transform = midas_transforms.dpt_transform
|
93 |
+
else:
|
94 |
+
transform = midas_transforms.small_transform
|
95 |
+
|
96 |
+
for i in range(len(self.paths)):
|
97 |
+
img = cv2.imread(self.paths[i])
|
98 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
99 |
+
|
100 |
+
latent_h = img.shape[0] // 8
|
101 |
+
latent_w = img.shape[1] // 8
|
102 |
|
103 |
+
input_batch = transform(img).to(device)
|
104 |
+
prediction = midas(input_batch)
|
105 |
+
|
106 |
+
depth_map = torch.nn.functional.interpolate(
|
107 |
+
prediction.unsqueeze(1),
|
108 |
+
size=(latent_h, latent_w),
|
109 |
+
mode="bicubic",
|
110 |
+
align_corners=False,
|
|
|
|
|
111 |
)
|
112 |
+
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
|
113 |
+
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
|
114 |
+
depth_map = 2.0 * (depth_map - depth_min) / (depth_max - depth_min) - 1.0
|
115 |
+
depth_maps.append(depth_map)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
return torch.cat(depth_maps).to(self.device).to(torch.float16)
|
118 |
+
|
119 |
+
@torch.no_grad()
|
120 |
+
def get_canny_cond(self):
|
121 |
+
canny_cond = []
|
122 |
+
for image in self.frames.cpu().permute(0, 2, 3, 1):
|
123 |
+
image = np.uint8(np.array(255 * image))
|
124 |
+
low_threshold = 100
|
125 |
+
high_threshold = 200
|
126 |
|
127 |
+
image = cv2.Canny(image, low_threshold, high_threshold)
|
128 |
+
image = image[:, :, None]
|
129 |
+
image = np.concatenate([image, image, image], axis=2)
|
130 |
+
image = torch.from_numpy((image.astype(np.float32) / 255.0))
|
131 |
+
canny_cond.append(image)
|
132 |
+
canny_cond = torch.stack(canny_cond).permute(0, 3, 1, 2).to(self.device).to(torch.float16)
|
133 |
+
return canny_cond
|
134 |
+
|
135 |
+
def controlnet_pred(self, latent_model_input, t, text_embed_input, controlnet_cond):
|
136 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
137 |
+
latent_model_input,
|
138 |
+
t,
|
139 |
+
encoder_hidden_states=text_embed_input,
|
140 |
+
controlnet_cond=controlnet_cond,
|
141 |
+
conditioning_scale=1,
|
142 |
+
return_dict=False,
|
143 |
+
)
|
144 |
+
|
145 |
+
# apply the denoising network
|
146 |
+
noise_pred = self.unet(
|
147 |
+
latent_model_input,
|
148 |
+
t,
|
149 |
+
encoder_hidden_states=text_embed_input,
|
150 |
+
cross_attention_kwargs={},
|
151 |
+
down_block_additional_residuals=down_block_res_samples,
|
152 |
+
mid_block_additional_residual=mid_block_res_sample,
|
153 |
+
return_dict=False,
|
154 |
+
)[0]
|
155 |
+
return noise_pred
|
156 |
|
157 |
+
@torch.no_grad()
|
158 |
+
def get_text_embeds(self, prompt, negative_prompt, device="cuda"):
|
159 |
+
text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
|
160 |
+
truncation=True, return_tensors='pt')
|
161 |
+
text_embeddings = self.text_encoder(text_input.input_ids.to(device))[0]
|
162 |
+
uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
|
163 |
+
return_tensors='pt')
|
164 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(device))[0]
|
165 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
166 |
+
return text_embeddings
|
167 |
+
|
168 |
+
@torch.no_grad()
|
169 |
+
def decode_latents(self, latents):
|
170 |
+
decoded = []
|
171 |
+
batch_size = 8
|
172 |
+
for b in range(0, latents.shape[0], batch_size):
|
173 |
+
latents_batch = 1 / 0.18215 * latents[b:b + batch_size]
|
174 |
+
imgs = self.vae.decode(latents_batch).sample
|
175 |
+
imgs = (imgs / 2 + 0.5).clamp(0, 1)
|
176 |
+
decoded.append(imgs)
|
177 |
+
return torch.cat(decoded)
|
178 |
+
|
179 |
+
@torch.no_grad()
|
180 |
+
def encode_imgs(self, imgs, batch_size=10, deterministic=True):
|
181 |
+
imgs = 2 * imgs - 1
|
182 |
+
latents = []
|
183 |
+
for i in range(0, len(imgs), batch_size):
|
184 |
+
posterior = self.vae.encode(imgs[i:i + batch_size]).latent_dist
|
185 |
+
latent = posterior.mean if deterministic else posterior.sample()
|
186 |
+
latents.append(latent * 0.18215)
|
187 |
+
latents = torch.cat(latents)
|
188 |
+
return latents
|
189 |
+
|
190 |
+
def get_data(self, frames_path, n_frames):
|
191 |
+
|
192 |
+
# load frames
|
193 |
+
if not self.config["frames"]:
|
194 |
+
paths = [f"{frames_path}/%05d.png" % i for i in range(n_frames)]
|
195 |
+
print(paths)
|
196 |
+
if not os.path.exists(paths[0]):
|
197 |
+
paths = [f"{frames_path}/%05d.jpg" % i for i in range(n_frames)]
|
198 |
+
self.paths = paths
|
199 |
+
frames = [Image.open(path).convert('RGB') for path in paths]
|
200 |
+
if frames[0].size[0] == frames[0].size[1]:
|
201 |
+
frames = [frame.resize((512, 512), resample=Image.Resampling.LANCZOS) for frame in frames]
|
202 |
+
else:
|
203 |
+
frames = self.config["frames"][:n_frames]
|
204 |
+
frames = torch.stack([T.ToTensor()(frame) for frame in frames]).to(torch.float16).to(self.device)
|
205 |
+
# encode to latents
|
206 |
+
latents = self.encode_imgs(frames, deterministic=True).to(torch.float16).to(self.device)
|
207 |
+
print("frames", frames.shape)
|
208 |
+
print("latents", latents.shape)
|
209 |
+
|
210 |
+
if not self.config["frames"]:
|
211 |
+
return paths, frames, latents
|
212 |
+
else:
|
213 |
+
return None, frames, latents
|
214 |
+
|
215 |
+
@torch.no_grad()
|
216 |
+
def ddim_inversion(self, cond, latent_frames, save_path, batch_size, save_latents=True, timesteps_to_save=None):
|
217 |
+
timesteps = reversed(self.scheduler.timesteps)
|
218 |
+
timesteps_to_save = timesteps_to_save if timesteps_to_save is not None else timesteps
|
219 |
+
|
220 |
+
return_inverted_latents = self.config["frames"] is not None
|
221 |
+
for i, t in enumerate(tqdm(timesteps)):
|
222 |
+
for b in range(0, latent_frames.shape[0], batch_size):
|
223 |
+
x_batch = latent_frames[b:b + batch_size]
|
224 |
+
model_input = x_batch
|
225 |
+
cond_batch = cond.repeat(x_batch.shape[0], 1, 1)
|
226 |
+
if self.sd_version == 'depth':
|
227 |
+
depth_maps = torch.cat([self.depth_maps[b: b + batch_size]])
|
228 |
+
model_input = torch.cat([x_batch, depth_maps],dim=1)
|
229 |
+
|
230 |
+
alpha_prod_t = self.scheduler.alphas_cumprod[t]
|
231 |
+
alpha_prod_t_prev = (
|
232 |
+
self.scheduler.alphas_cumprod[timesteps[i - 1]]
|
233 |
+
if i > 0 else self.scheduler.final_alpha_cumprod
|
234 |
+
)
|
235 |
+
|
236 |
+
mu = alpha_prod_t ** 0.5
|
237 |
+
mu_prev = alpha_prod_t_prev ** 0.5
|
238 |
+
sigma = (1 - alpha_prod_t) ** 0.5
|
239 |
+
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
|
240 |
+
|
241 |
+
eps = self.unet(model_input, t, encoder_hidden_states=cond_batch).sample if self.sd_version != 'ControlNet' \
|
242 |
+
else self.controlnet_pred(x_batch, t, cond_batch, torch.cat([self.canny_cond[b: b + batch_size]]))
|
243 |
+
pred_x0 = (x_batch - sigma_prev * eps) / mu_prev
|
244 |
+
latent_frames[b:b + batch_size] = mu * pred_x0 + sigma * eps
|
245 |
+
|
246 |
+
if return_inverted_latents and t in timesteps_to_save:
|
247 |
+
self.total_inverted_latents[f'noisy_latents_{t}'] = latent_frames.clone()
|
248 |
|
249 |
+
if save_latents and t in timesteps_to_save:
|
250 |
+
torch.save(latent_frames, os.path.join(save_path, 'latents', f'noisy_latents_{t}.pt'))
|
251 |
+
|
252 |
+
if save_latents:
|
253 |
+
torch.save(latent_frames, os.path.join(save_path, 'latents', f'noisy_latents_{t}.pt'))
|
254 |
+
if return_inverted_latents:
|
255 |
+
self.total_inverted_latents[f'noisy_latents_{t}'] = latent_frames.clone()
|
256 |
+
|
257 |
+
return latent_frames
|
258 |
+
|
259 |
+
@torch.no_grad()
|
260 |
+
def ddim_sample(self, x, cond, batch_size):
|
261 |
+
timesteps = self.scheduler.timesteps
|
262 |
+
for i, t in enumerate(tqdm(timesteps)):
|
263 |
+
for b in range(0, x.shape[0], batch_size):
|
264 |
+
x_batch = x[b:b + batch_size]
|
265 |
+
model_input = x_batch
|
266 |
+
cond_batch = cond.repeat(x_batch.shape[0], 1, 1)
|
267 |
+
|
268 |
+
if self.sd_version == 'depth':
|
269 |
+
depth_maps = torch.cat([self.depth_maps[b: b + batch_size]])
|
270 |
+
model_input = torch.cat([x_batch, depth_maps],dim=1)
|
271 |
+
|
272 |
+
alpha_prod_t = self.scheduler.alphas_cumprod[t]
|
273 |
+
alpha_prod_t_prev = (
|
274 |
+
self.scheduler.alphas_cumprod[timesteps[i + 1]]
|
275 |
+
if i < len(timesteps) - 1
|
276 |
+
else self.scheduler.final_alpha_cumprod
|
277 |
+
)
|
278 |
+
mu = alpha_prod_t ** 0.5
|
279 |
+
sigma = (1 - alpha_prod_t) ** 0.5
|
280 |
+
mu_prev = alpha_prod_t_prev ** 0.5
|
281 |
+
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
|
282 |
+
|
283 |
+
eps = self.unet(model_input, t, encoder_hidden_states=cond_batch).sample if self.sd_version != 'ControlNet' \
|
284 |
+
else self.controlnet_pred(x_batch, t, cond_batch, torch.cat([self.canny_cond[b: b + batch_size]]))
|
285 |
+
|
286 |
+
pred_x0 = (x_batch - sigma * eps) / mu
|
287 |
+
x[b:b + batch_size] = mu_prev * pred_x0 + sigma_prev * eps
|
288 |
+
return x
|
289 |
+
|
290 |
+
@torch.no_grad()
|
291 |
+
def extract_latents(self,
|
292 |
+
num_steps,
|
293 |
+
save_path,
|
294 |
+
batch_size,
|
295 |
+
timesteps_to_save,
|
296 |
+
inversion_prompt='',
|
297 |
+
reconstruct=False):
|
298 |
+
self.scheduler.set_timesteps(num_steps)
|
299 |
+
cond = self.get_text_embeds(inversion_prompt, "")[1].unsqueeze(0)
|
300 |
+
latent_frames = self.latents
|
301 |
+
print("latent_frames", latent_frames.shape)
|
302 |
+
|
303 |
+
inverted_x= self.ddim_inversion(cond,
|
304 |
+
latent_frames,
|
305 |
+
save_path,
|
306 |
+
batch_size=batch_size,
|
307 |
+
save_latents=True if save_path else False,
|
308 |
+
timesteps_to_save=timesteps_to_save)
|
309 |
+
|
310 |
+
|
311 |
+
|
312 |
+
# print("total_inverted_latents", len(total_inverted_latents.keys()))
|
313 |
+
|
314 |
+
if reconstruct:
|
315 |
+
latent_reconstruction = self.ddim_sample(inverted_x, cond, batch_size=batch_size)
|
316 |
+
|
317 |
+
rgb_reconstruction = self.decode_latents(latent_reconstruction)
|
318 |
+
return self.frames, self.latents, self.total_inverted_latents, rgb_reconstruction
|
319 |
+
|
320 |
+
return self.frames, self.latents, self.total_inverted_latents, None
|
321 |
+
|
322 |
+
|
323 |
+
|
324 |
|