File size: 8,300 Bytes
9c9eef9 ebe2332 56888a5 ebe2332 753217c f68cd65 e82025d f68cd65 753217c f68cd65 753217c f68cd65 56888a5 ebe2332 f68cd65 56888a5 ebe2332 8bd4f69 530524e a40894f 424e459 b49d6ac 8bd4f69 530524e 8bd4f69 424e459 a40894f ebe2332 a40894f ebe2332 a40894f ebe2332 a40894f ebe2332 a40894f ebe2332 a40894f f68cd65 ebe2332 f68cd65 ebe2332 a40894f ebe2332 f68cd65 ebe2332 65314b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import torch
from transformers import (
Qwen2VLForConditionalGeneration,
AutoProcessor,
AutoModelForCausalLM,
AutoTokenizer
)
from qwen_vl_utils import process_vision_info
from PIL import Image
import cv2
import numpy as np
import gradio as gr
import spaces
from huggingface_hub import login
import os
# Add quota management constants
MAX_GPU_TIME_PER_REQUEST = 59 # seconds
COOLDOWN_PERIOD = 300 # 5 minutes in seconds
# Add login function at the start
def init_huggingface_auth():
# Get token from environment variable or set it directly
token = os.getenv("HUGGINGFACE_TOKEN")
if token:
login(token=token)
print("Successfully authenticated with Hugging Face")
else:
raise ValueError("HUGGINGFACE_TOKEN not found in environment variables")
# Load both models and their processors/tokenizers
def load_models():
try:
# Initialize HF auth before loading models
init_huggingface_auth()
# Vision model
vision_model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-2B-Instruct",
torch_dtype=torch.float16,
device_map="auto",
use_auth_token=True # Add auth token usage
)
vision_processor = AutoProcessor.from_pretrained(
"Qwen/Qwen2-VL-2B-Instruct",
use_auth_token=True # Add auth token usage
)
# Code model
code_model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen2.5-Coder-1.5B-Instruct",
torch_dtype=torch.float16,
device_map="auto",
use_auth_token=True # Add auth token usage
)
code_tokenizer = AutoTokenizer.from_pretrained(
"Qwen/Qwen2.5-Coder-1.5B-Instruct",
use_auth_token=True # Add auth token usage
)
# Free up CUDA memory after loading
torch.cuda.empty_cache()
return vision_model, vision_processor, code_model, code_tokenizer
except Exception as e:
print(f"Error loading models: {str(e)}")
raise
vision_model, vision_processor, code_model, code_tokenizer = load_models()
VISION_SYSTEM_PROMPT = """Extract code from images/videos:
1. Output exact code snippets only
2. Keep original formatting/indentation
focus on code-relevant frames only
[code]
If multiple code sections are visible, separate them with ---
Note: In video, irrelevant frames may occur (e.g., other windows tabs, eterniq website, etc.) in video. Please focus on code-specific frames as we have to extract that content only.
"""
CODE_SYSTEM_PROMPT = """Debug code as an expert:
- Analyze OCR-extracted code + user's issue
- Find bugs/issues
- Provide fixes
- Explain corrections
Output:
Fixed Code:
[corrected code]
Original Issue:
[brief analysis]
Note: Please provide the output in a well-structured Markdown format. Remove all unnecessary information and exclude any additional code formatting such as triple backticks or language identifiers.
"""
def process_video_for_code(video_path, transcribed_text, max_frames=16, frame_interval=30):
cap = cv2.VideoCapture(video_path)
frames = []
frame_count = 0
while len(frames) < max_frames:
ret, frame = cap.read()
if not ret:
break
if frame_count % frame_interval == 0:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = Image.fromarray(frame)
frames.append(frame)
frame_count += 1
cap.release()
if not frames:
return "No frames could be extracted from the video.", "No code could be analyzed."
# Process all frames
vision_descriptions = []
for frame in frames:
vision_description = process_image_for_vision(frame, transcribed_text)
vision_descriptions.append(vision_description)
# Combine all vision descriptions
combined_vision_description = "\n\n".join(vision_descriptions)
# Use code model to fix the code based on combined description
fixed_code_response = process_for_code(combined_vision_description)
return combined_vision_description, fixed_code_response
def process_image_for_vision(image, transcribed_text):
vision_messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": f"{VISION_SYSTEM_PROMPT}\n\nDescribe the code and any errors you see in this image. User's description: {transcribed_text}"},
],
}
]
vision_text = vision_processor.apply_chat_template(
vision_messages,
tokenize=False,
add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(vision_messages)
vision_inputs = vision_processor(
text=[vision_text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to(vision_model.device)
with torch.no_grad():
vision_output_ids = vision_model.generate(**vision_inputs, max_new_tokens=512)
vision_output_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(vision_inputs.input_ids, vision_output_ids)
]
return vision_processor.batch_decode(
vision_output_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)[0]
def process_for_code(vision_description):
code_messages = [
{"role": "system", "content": CODE_SYSTEM_PROMPT},
{"role": "user", "content": f"Here's a description of code with errors:\n\n{vision_description}\n\nPlease analyze and fix the code."}
]
code_text = code_tokenizer.apply_chat_template(
code_messages,
tokenize=False,
add_generation_prompt=True
)
code_inputs = code_tokenizer([code_text], return_tensors="pt").to(code_model.device)
with torch.no_grad():
code_output_ids = code_model.generate(
**code_inputs,
max_new_tokens=1024,
temperature=0.7,
top_p=0.95,
)
code_output_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(code_inputs.input_ids, code_output_ids)
]
return code_tokenizer.batch_decode(
code_output_trimmed,
skip_special_tokens=True
)[0]
@spaces.GPU
def process_content(video, transcribed_text):
try:
if video is None:
return "Please upload a video file of code with errors.", ""
# Add GPU memory management
torch.cuda.empty_cache()
# Check available GPU memory
if torch.cuda.is_available():
available_memory = torch.cuda.get_device_properties(0).total_memory
if available_memory < 1e9: # Less than 1GB available
raise RuntimeError("Insufficient GPU memory available")
vision_output, code_output = process_video_for_code(
video.name,
transcribed_text,
max_frames=8 # Reduced from 16 to lower GPU usage
)
return vision_output, code_output
except spaces.zero.gradio.HTMLError as e:
if "exceeded your GPU quota" in str(e):
return (
"GPU quota exceeded. Please try again later or consider upgrading to a paid plan.",
""
)
except Exception as e:
return f"Error processing content: {str(e)}", ""
finally:
# Clean up GPU memory
torch.cuda.empty_cache()
# Gradio interface
iface = gr.Interface(
fn=process_content,
inputs=[
gr.File(label="Upload Video of Code with Errors"),
gr.Textbox(label="Transcribed Audio")
],
outputs=[
gr.Textbox(label="Vision Model Output (Code Description)"),
gr.Code(label="Fixed Code", language="python")
],
title="Vision Code Debugger",
description="Upload a video of code with errors and provide transcribed audio, and the AI will analyze and fix the issues.",
allow_flagging="never", # Disable flagging to reduce overhead
cache_examples=True # Enable caching to reduce GPU usage
)
if __name__ == "__main__":
iface.launch(show_error=True) |