|
import torch |
|
from transformers import ( |
|
Qwen2VLForConditionalGeneration, |
|
AutoProcessor, |
|
AutoModelForCausalLM, |
|
AutoTokenizer |
|
) |
|
from qwen_vl_utils import process_vision_info |
|
from PIL import Image |
|
import cv2 |
|
import numpy as np |
|
import gradio as gr |
|
import spaces |
|
|
|
|
|
def load_models(): |
|
|
|
vision_model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
"Qwen/Qwen2-VL-2B-Instruct", |
|
torch_dtype=torch.float16, |
|
device_map="auto" |
|
) |
|
vision_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") |
|
|
|
|
|
code_model = AutoModelForCausalLM.from_pretrained( |
|
"Qwen/Qwen2.5-Coder-1.5B-Instruct", |
|
torch_dtype=torch.float16, |
|
device_map="auto" |
|
) |
|
code_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-1.5B-Instruct") |
|
|
|
return vision_model, vision_processor, code_model, code_tokenizer |
|
|
|
vision_model, vision_processor, code_model, code_tokenizer = load_models() |
|
|
|
VISION_SYSTEM_PROMPT = """You are an AI assistant specialized in analyzing images and videos of code editors. Your task is to: |
|
1. Extract and describe any code snippets visible in the image |
|
2. Identify any error messages, warnings, or highlighting that indicates bugs |
|
3. Describe the programming language and context if visible |
|
Be thorough and accurate in your description, as this will be used to fix the code.""" |
|
|
|
CODE_SYSTEM_PROMPT = """You are an expert code debugging assistant. Based on the description of code and errors provided, your task is to: |
|
1. Identify the bugs and issues in the code |
|
2. Provide a corrected version of the code |
|
3. Explain the fixes made and why they resolve the issues |
|
Be thorough in your explanation and ensure the corrected code is complete and functional.""" |
|
|
|
def process_image_for_code(image): |
|
|
|
vision_messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "image", "image": image}, |
|
{"type": "text", "text": f"{VISION_SYSTEM_PROMPT}\n\nDescribe the code and any errors you see in this image."}, |
|
], |
|
} |
|
] |
|
|
|
vision_text = vision_processor.apply_chat_template( |
|
vision_messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
image_inputs, video_inputs = process_vision_info(vision_messages) |
|
|
|
vision_inputs = vision_processor( |
|
text=[vision_text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
).to(vision_model.device) |
|
|
|
with torch.no_grad(): |
|
vision_output_ids = vision_model.generate(**vision_inputs, max_new_tokens=512) |
|
vision_output_trimmed = [ |
|
out_ids[len(in_ids):] for in_ids, out_ids in zip(vision_inputs.input_ids, vision_output_ids) |
|
] |
|
vision_description = vision_processor.batch_decode( |
|
vision_output_trimmed, |
|
skip_special_tokens=True, |
|
clean_up_tokenization_spaces=False |
|
)[0] |
|
|
|
|
|
code_messages = [ |
|
{"role": "system", "content": CODE_SYSTEM_PROMPT}, |
|
{"role": "user", "content": f"Here's a description of code with errors:\n\n{vision_description}\n\nPlease analyze and fix the code."} |
|
] |
|
|
|
code_text = code_tokenizer.apply_chat_template( |
|
code_messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
|
|
code_inputs = code_tokenizer([code_text], return_tensors="pt").to(code_model.device) |
|
|
|
with torch.no_grad(): |
|
code_output_ids = code_model.generate( |
|
**code_inputs, |
|
max_new_tokens=1024, |
|
temperature=0.7, |
|
top_p=0.95, |
|
) |
|
|
|
code_output_trimmed = [ |
|
out_ids[len(in_ids):] for in_ids, out_ids in zip(code_inputs.input_ids, code_output_ids) |
|
] |
|
fixed_code_response = code_tokenizer.batch_decode( |
|
code_output_trimmed, |
|
skip_special_tokens=True |
|
)[0] |
|
|
|
return vision_description, fixed_code_response |
|
|
|
def process_video_for_code(video_path, max_frames=16, frame_interval=30): |
|
cap = cv2.VideoCapture(video_path) |
|
frames = [] |
|
frame_count = 0 |
|
|
|
while len(frames) < max_frames: |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
|
|
if frame_count % frame_interval == 0: |
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
frame = Image.fromarray(frame) |
|
frames.append(frame) |
|
|
|
frame_count += 1 |
|
|
|
cap.release() |
|
|
|
|
|
if frames: |
|
return process_image_for_code(frames[0]) |
|
else: |
|
return "No frames could be extracted from the video.", "No code could be analyzed." |
|
|
|
@spaces.GPU |
|
def process_content(content): |
|
if content is None: |
|
return "Please upload an image or video file of code with errors.", "" |
|
|
|
if content.name.lower().endswith(('.png', '.jpg', '.jpeg')): |
|
image = Image.open(content.name) |
|
vision_output, code_output = process_image_for_code(image) |
|
elif content.name.lower().endswith(('.mp4', '.avi', '.mov')): |
|
vision_output, code_output = process_video_for_code(content.name) |
|
else: |
|
return "Unsupported file type. Please provide an image or video file.", "" |
|
|
|
return vision_output, code_output |
|
|
|
|
|
iface = gr.Interface( |
|
fn=process_content, |
|
inputs=gr.File(label="Upload Image or Video of Code with Errors"), |
|
outputs=[ |
|
gr.Textbox(label="Vision Model Output (Code Description)"), |
|
gr.Code(label="Fixed Code", language="python") |
|
], |
|
title="Vision Code Debugger", |
|
description="Upload an image or video of code with errors, and the AI will analyze and fix the issues." |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |