import torch from transformers import ( Qwen2VLForConditionalGeneration, AutoProcessor, AutoModelForCausalLM, AutoTokenizer ) from qwen_vl_utils import process_vision_info from PIL import Image import cv2 import numpy as np import gradio as gr import spaces from huggingface_hub import login import os # Add quota management constants MAX_GPU_TIME_PER_REQUEST = 60 # seconds COOLDOWN_PERIOD = 300 # 5 minutes in seconds # Add login function at the start def init_huggingface_auth(): # Get token from environment variable or set it directly token = os.getenv("HUGGINGFACE_TOKEN") if token: login(token=token) print("Successfully authenticated with Hugging Face") else: raise ValueError("HUGGINGFACE_TOKEN not found in environment variables") # Load both models and their processors/tokenizers def load_models(): try: # Initialize HF auth before loading models init_huggingface_auth() # Vision model vision_model = Qwen2VLForConditionalGeneration.from_pretrained( "Qwen/Qwen2-VL-2B-Instruct", torch_dtype=torch.float16, device_map="auto", use_auth_token=True # Add auth token usage ) vision_processor = AutoProcessor.from_pretrained( "Qwen/Qwen2-VL-2B-Instruct", use_auth_token=True # Add auth token usage ) # Code model code_model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen2.5-Coder-1.5B-Instruct", torch_dtype=torch.float16, device_map="auto", use_auth_token=True # Add auth token usage ) code_tokenizer = AutoTokenizer.from_pretrained( "Qwen/Qwen2.5-Coder-1.5B-Instruct", use_auth_token=True # Add auth token usage ) # Free up CUDA memory after loading torch.cuda.empty_cache() return vision_model, vision_processor, code_model, code_tokenizer except Exception as e: print(f"Error loading models: {str(e)}") raise vision_model, vision_processor, code_model, code_tokenizer = load_models() VISION_SYSTEM_PROMPT = """You are an OCR system specialized in extracting code from images and videos. Your task is to: 1. Extract and output ONLY the exact code snippets visible in the image 2. Maintain exact formatting, indentation, and whitespace 3. Do not add any descriptions, analysis, or commentary 4. If there are error messages or console outputs visible, include them exactly as shown Output Format: ```[language] [extracted code here] If multiple code sections are visible, separate them with --- Note: In video, irrelevant frames may occur (e.g., other windows tabs, eterniq website, etc.) in video. Please focus on code-specific frames as we have to extract that content only. """ CODE_SYSTEM_PROMPT = """You are an expert code debugging assistant. You will receive: 1. Original code (extracted by OCR) 2. User's description of the issue 3. Additional context if any Your task is to: 1. Analyze the provided code considering the user's description 2. Identify bugs and issues 3. Provide a corrected version of the code 4. Explain the specific fixes made Output Format: Fixed Code: [corrected code here] Original Code Issue: [Brief description of the issues based on user input and code analysis] Note: Please provide the output in a well-structured Markdown format. Remove all unnecessary information and exclude any additional code formatting such as triple backticks or language identifiers. The response should be ready to be rendered as Markdown content. """ def process_video_for_code(video_path, transcribed_text, max_frames=16, frame_interval=30): cap = cv2.VideoCapture(video_path) frames = [] frame_count = 0 while len(frames) < max_frames: ret, frame = cap.read() if not ret: break if frame_count % frame_interval == 0: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frame = Image.fromarray(frame) frames.append(frame) frame_count += 1 cap.release() if not frames: return "No frames could be extracted from the video.", "No code could be analyzed." # Process all frames vision_descriptions = [] for frame in frames: vision_description = process_image_for_vision(frame, transcribed_text) vision_descriptions.append(vision_description) # Combine all vision descriptions combined_vision_description = "\n\n".join(vision_descriptions) # Use code model to fix the code based on combined description fixed_code_response = process_for_code(combined_vision_description) return combined_vision_description, fixed_code_response def process_image_for_vision(image, transcribed_text): vision_messages = [ { "role": "user", "content": [ {"type": "image", "image": image}, {"type": "text", "text": f"{VISION_SYSTEM_PROMPT}\n\nDescribe the code and any errors you see in this image. User's description: {transcribed_text}"}, ], } ] vision_text = vision_processor.apply_chat_template( vision_messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(vision_messages) vision_inputs = vision_processor( text=[vision_text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ).to(vision_model.device) with torch.no_grad(): vision_output_ids = vision_model.generate(**vision_inputs, max_new_tokens=512) vision_output_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(vision_inputs.input_ids, vision_output_ids) ] return vision_processor.batch_decode( vision_output_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False )[0] def process_for_code(vision_description): code_messages = [ {"role": "system", "content": CODE_SYSTEM_PROMPT}, {"role": "user", "content": f"Here's a description of code with errors:\n\n{vision_description}\n\nPlease analyze and fix the code."} ] code_text = code_tokenizer.apply_chat_template( code_messages, tokenize=False, add_generation_prompt=True ) code_inputs = code_tokenizer([code_text], return_tensors="pt").to(code_model.device) with torch.no_grad(): code_output_ids = code_model.generate( **code_inputs, max_new_tokens=1024, temperature=0.7, top_p=0.95, ) code_output_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(code_inputs.input_ids, code_output_ids) ] return code_tokenizer.batch_decode( code_output_trimmed, skip_special_tokens=True )[0] @spaces.GPU def process_content(video, transcribed_text): try: if video is None: return "Please upload a video file of code with errors.", "" # Add GPU memory management torch.cuda.empty_cache() # Check available GPU memory if torch.cuda.is_available(): available_memory = torch.cuda.get_device_properties(0).total_memory if available_memory < 1e9: # Less than 1GB available raise RuntimeError("Insufficient GPU memory available") vision_output, code_output = process_video_for_code( video.name, transcribed_text, max_frames=8 # Reduced from 16 to lower GPU usage ) return vision_output, code_output except spaces.zero.gradio.HTMLError as e: if "exceeded your GPU quota" in str(e): return ( "GPU quota exceeded. Please try again later or consider upgrading to a paid plan.", "" ) except Exception as e: return f"Error processing content: {str(e)}", "" finally: # Clean up GPU memory torch.cuda.empty_cache() # Gradio interface iface = gr.Interface( fn=process_content, inputs=[ gr.File(label="Upload Video of Code with Errors"), gr.Textbox(label="Transcribed Audio") ], outputs=[ gr.Textbox(label="Vision Model Output (Code Description)"), gr.Code(label="Fixed Code", language="python") ], title="Vision Code Debugger", description="Upload a video of code with errors and provide transcribed audio, and the AI will analyze and fix the issues.", allow_flagging="never", # Disable flagging to reduce overhead cache_examples=True # Enable caching to reduce GPU usage ) if __name__ == "__main__": iface.launch(show_error=True)