from fastai.vision.all import * import gradio as gr import skimage learn = load_learner('bearmodel.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Bear Breed Classifier" description = "A bear breed classifier trained on a custom dataset from DDG images with fastai. Created as a demo for Gradio and HuggingFace Spaces." #interpretation ='default' image = gr.Image(height=192, width=192) label = gr.Label() examples = [['black bear.jfif'], ['grizzly bear.jfif'], ['teddy bear.jfif']] #enable_queue=True intf = gr.Interface(fn=predict, inputs=image, outputs=label, title=title, description=description,examples=examples) intf.launch(inline=False) #def greet(name): # return "Hello " + name + "!!" #demo = gr.Interface(fn=greet, inputs="text", outputs="text") #demo.launch()