from fastai.vision.all import * import gradio as gr import skimage from pathlib import Path # Assuming your model file is in the same directory as your script model_path = Path("puppy.pkl") # Load the model using the relative path learn = load_learner(model_path) labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Puppy Breed Classifier" description = "A puppy breed classifier trained on a custom dataset from DDG images with fastai. Created as a demo for Gradio and HuggingFace Spaces." image = gr.Image(height=215, width=215) label = gr.Label() examples = [['corgi puppy.jfif'], ['golden retriever.jfif'], ['husky bear.jfif']] intf = gr.Interface(fn=predict, inputs=image, outputs=label, title=title, description=description,examples=examples) intf.launch(inline=False)