Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
model = AutoModelForSeq2SeqLM.from_pretrained("ramsrigouthamg/t5-large-paraphraser-diverse-high-quality") | |
tokenizer = AutoTokenizer.from_pretrained("ramsrigouthamg/t5-large-paraphraser-diverse-high-quality") | |
import torch | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
#print ("device ",device) | |
model = model.to(device)# Diverse Beam search | |
#print ("\n\n") | |
#print ("Original: ",context) | |
def generate_text(inp): | |
context = inp | |
text = "paraphrase: "+context + " </s>" | |
encoding = tokenizer.encode_plus(text,max_length =128, padding=True, return_tensors="pt") | |
input_ids,attention_mask = encoding["input_ids"].to(device), encoding["attention_mask"].to(device) | |
model.eval() | |
diverse_beam_outputs = model.generate( | |
input_ids=input_ids,attention_mask=attention_mask, | |
max_length=128, | |
early_stopping=True, | |
num_beams=5, | |
num_beam_groups = 5, | |
num_return_sequences=5, | |
diversity_penalty = 0.70) | |
sent = tokenizer.decode(diverse_beam_outputs[0], skip_special_tokens=True,clean_up_tokenization_spaces=True) | |
return sent | |
output_text = gr.outputs.Textbox() | |
gr.Interface(generate_text,"textbox", output_text).launch(inline=False) |