williamcfrancis's picture
Upload 74 files
e22b55b
raw
history blame
2.62 kB
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, Activation, BatchNormalization, Dropout, MaxPool2D
from tensorflow.keras.layers import Flatten, Dense
from tensorflow import nn as tfn
import tensorflow.keras.backend as K
class MiniVgg:
@staticmethod
def build(width,height,depth,classes):
model=Sequential()
inputShape=(height,width,depth)
chanDim=-1
if K.image_data_format()=="channel_first":
inputShape=(depth,height,width)
chanDim=1
model.add(Conv2D(32,(5,5),input_shape=inputShape))
model.add(Activation(tfn.relu))
model.add(BatchNormalization(chanDim))
model.add(Conv2D(32, (5, 5)))
model.add(Activation(tfn.relu))
model.add(BatchNormalization(chanDim))
model.add(Conv2D(32, (5, 5)))
model.add(Activation(tfn.relu))
model.add(BatchNormalization(chanDim))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.25))
#-----------------------------------#
model.add(Conv2D(32, (5, 5), input_shape=inputShape))
model.add(Activation(tfn.relu))
model.add(BatchNormalization(chanDim))
model.add(Conv2D(32, (5, 5)))
model.add(Activation(tfn.relu))
model.add(BatchNormalization(chanDim))
model.add(Conv2D(64, (5, 5)))
model.add(Activation(tfn.relu))
model.add(BatchNormalization(chanDim))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
#-----------------------------#
model.add(Conv2D(64, (5, 5), input_shape=inputShape))
model.add(Activation(tfn.relu))
model.add(BatchNormalization(chanDim))
model.add(Conv2D(64, (5, 5)))
model.add(Activation(tfn.relu))
model.add(BatchNormalization(chanDim))
model.add(Conv2D(64, (5, 5)))
model.add(Activation(tfn.relu))
model.add(BatchNormalization(chanDim))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
#-----------------------------#
model.add(Conv2D(64, (5, 5)))
model.add(Activation(tfn.relu))
model.add(BatchNormalization(chanDim))
model.add(Conv2D(64, (5, 5)))
model.add(Activation(tfn.relu))
model.add(BatchNormalization(chanDim))
model.add(Flatten())
model.add(Dense(1024))
model.add(Activation(tfn.relu))
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(classes))
model.add(Activation(tfn.relu))
return model