williamcfrancis's picture
Upload 74 files
e22b55b
from tensorflow.keras import callbacks
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import json
import os
class TrainMonitor(callbacks.BaseLogger):
def __init__(self, figPath, jsonPath=None, startAt=0):
super(TrainMonitor, self).__init__()
self.figPath= figPath
self.jsonPath= jsonPath
self.startAt= startAt
def on_train_begin(self, logs={}):
self.H={}
if self.jsonPath is not None:
if os.path.exists(self.jsonPath):
self.H = json.loads(open(self.jsonPath).read())
if self.startAt > 0:
for k in self.H.keys():
self.H[k] = self.H[k][:self.startAt]
def on_epoch_end(self, epoch, logs={}):
for keys, values in logs.items():
l= self.H.get(keys, [])
l.append(float(values))
self.H[keys] = l
if self.jsonPath is not None:
with open(self.jsonPath, 'w') as f:
f.write(json.dumps(self.H))
f.close()
if len(self.H["loss"]) > 1:
N = np.arange(0, len(self.H["loss"]), 1)
plt.style.use("ggplot")
plt.figure()
plt.plot(N, self.H["loss"], label="train_loss")
plt.plot(N, self.H["val_loss"], label="val_loss")
plt.plot(N, self.H["accuracy"], label="train_acc")
plt.plot(N, self.H["val_accuracy"], label="val_acc")
plt.title("Training Loss and Accuracy [Epoch {}]".format(len(self.H["loss"])))
plt.xlabel("Epoch #")
plt.ylabel("Loss/Accuracy")
plt.legend()
plt.savefig(self.figPath)
plt.close()