import numpy as np def calculate_ranked(preds, labels): rank1=0 rank5=0 for p,l in zip(preds, labels): #sort preds in descending order of their confidence and return the indices of these p= np.argsort(p)[::-1] # checking for rank5 if l in p[:5]: rank5+=1 # checking rank1 if l==p[0]: rank1+=1 # Final accuracies rank1= rank1/len(labels) rank5= rank5/len(labels) return rank1,rank5