import cv2 import numpy as np from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.image import img_to_array import argparse import gradio as gr # ap= argparse.ArgumentParser() # ap.add_argument('--image', '-i', required=True, help='Path to input blurred image') # ap.add_argument('--angle_model', '-a', required=True, help='Path to trained angle model') # ap.add_argument('--length_model', '-l', required=True, help='Path to trained length model') # args= vars(ap.parse_args()) def process(ip_image, length, deblur_angle): noise = 0.01 size = 200 length= int(length) angle = (deblur_angle*np.pi) /180 psf = np.ones((1, length), np.float32) #base image for psf costerm, sinterm = np.cos(angle), np.sin(angle) Ang = np.float32([[-costerm, sinterm, 0], [sinterm, costerm, 0]]) size2 = size // 2 Ang[:,2] = (size2, size2) - np.dot(Ang[:,:2], ((length-1)*0.5, 0)) psf = cv2.warpAffine(psf, Ang, (size, size), flags=cv2.INTER_CUBIC) #Warp affine to get the desired psf # cv2.imshow("PSF",psf) # cv2.waitKey(0) # cv2.destroyAllWindows() gray = ip_image gray = np.float32(gray) / 255.0 gray_dft = cv2.dft(gray, flags=cv2.DFT_COMPLEX_OUTPUT) #DFT of the image psf /= psf.sum() #Dividing by the sum psf_mat = np.zeros_like(gray) psf_mat[:size, :size] = psf psf_dft = cv2.dft(psf_mat, flags=cv2.DFT_COMPLEX_OUTPUT) #DFT of the psf PSFsq = (psf_dft**2).sum(-1) imgPSF = psf_dft / (PSFsq + noise)[...,np.newaxis] #H in the equation for wiener deconvolution gray_op = cv2.mulSpectrums(gray_dft, imgPSF, 0) gray_res = cv2.idft(gray_op,flags = cv2.DFT_SCALE | cv2.DFT_REAL_OUTPUT) #Inverse DFT gray_res = np.roll(gray_res, -size//2,0) gray_res = np.roll(gray_res, -size//2,1) return gray_res # Function to visualize the Fast Fourier Transform of the blurred images. def create_fft(img): img = np.float32(img) / 255.0 f = np.fft.fft2(img) fshift = np.fft.fftshift(f) mag_spec = 20 * np.log(np.abs(fshift)) mag_spec = np.asarray(mag_spec, dtype=np.uint8) return mag_spec def deblur_img(ip_image): # Change this variable with the name of the trained models. angle_model_name= 'pretrained_models/angle_model.hdf5' length_model_name= 'pretrained_models/length_model.hdf5' model1= load_model(angle_model_name) model2= load_model(length_model_name) # read blurred image # ip_image = cv2.imread(args['image']) # ip_image= cv2.cvtColor(ip_image, cv2.COLOR_BGR2GRAY) ip_image= cv2.resize(ip_image, (640, 480)) # FFT visualization of the blurred image fft_img= create_fft(ip_image) # Predicting the psf parameters of length and angle. img= cv2.resize(create_fft(ip_image), (224,224)) img= np.expand_dims(img_to_array(img), axis=0)/ 255.0 preds= model1.predict(img) # angle_value= np.sum(np.multiply(np.arange(0, 180), preds[0])) angle_value = np.mean(np.argsort(preds[0])[-3:]) # print("Predicted Blur Angle: ", angle_value) length_value= model2.predict(img)[0][0] # print("Predicted Blur Length: ",length_value) op_image = process(ip_image, length_value, angle_value) op_image = (op_image*255).astype(np.uint8) op_image = (255/(np.max(op_image)-np.min(op_image))) * (op_image-np.min(op_image)) return op_image css = ".output-image, .input-image, .image-preview {height: 480px !important} " gr.Interface( fn=deblur_img, inputs=[ gr.inputs.Image(type="pil", label="Input Image"), ], outputs="image", title="Image Upscaling 🦆", description="Model: [Anchor-based Plain Net for Mobile Image Super-Resolution](https://arxiv.org/abs/2105.09750). Repository: [SR Mobile PyTorch](https://github.com/w11wo/sr_mobile_pytorch)", allow_flagging="never", css=css, ).launch()