nurindahpratiwi commited on
Commit
d576cda
1 Parent(s): 650ecfb

first commit

Browse files
Files changed (2) hide show
  1. app.py +75 -0
  2. requirements.txt +11 -0
app.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from streamlit_chat import message
3
+ import tempfile
4
+ from langchain.document_loaders.csv_loader import CSVLoader
5
+ from langchain.embeddings import HuggingFaceEmbeddings
6
+ from langchain.vectorstores import FAISS
7
+ from langchian.llms import CTransformers
8
+ from langchain.chains import ConversationalRetrievalChain
9
+
10
+ DB_FAISS_PATH ='vectorstore/db_faiss'
11
+
12
+ #Loading the model
13
+ def load_llm():
14
+ llm = CTransformers(
15
+ model= "TheBloke/Llama-2-7B-Chat-GGML",
16
+ max_new_tokens=512,
17
+ temperature=0.5
18
+ )
19
+ return llm
20
+
21
+ st.image("https://huggingface.co/spaces/wiwaaw/summary/resolve/main/banner.png")
22
+ st.title("Chat with CSV using Llama2")
23
+
24
+ uploaded_file = st.sidebar.file_uploader("Upload your data", type="csv")
25
+ if uploaded_file is not None:
26
+ with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
27
+ tmp_file.write(uploaded_file.getvalue())
28
+ tmp_file_path = tmp_file.name
29
+
30
+ loader = CSVLoader(file_path=tmp_file_path, encoding="utf-8", csv_args={
31
+ 'delimiter': ',', # default value
32
+ })
33
+ data = loader.load()
34
+ embeddings=HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2',
35
+ model_kwargs={'device': 'cpu'})
36
+ db = FAISS.from_documents(data, embeddings)
37
+ db.save_local(DB_FAISS_PATH)
38
+ llm = load_llm()
39
+ chain=ConversationalRetrievalChain.from_llm(llm=llm, retriever=db.as_retriever())
40
+
41
+ def conversational_chat(query):
42
+ result = chain({'question': query, "chat_history": st.session_state['history']})
43
+ st.session_state['history'].append((query, result['answer']))
44
+ return result['answer']
45
+
46
+ if 'history' not in st.session_state:
47
+ st.session_state['history'] = []
48
+
49
+ if 'generated' not in st.session_state:
50
+ st.session_state['generated'] = ''
51
+
52
+ if 'past' not in st.session_state:
53
+ st.session_state['past'] = ["Hey!"]
54
+
55
+ #container for the chat history
56
+ response_container = st.container()
57
+ #container for the user's text input
58
+ container = st.container()
59
+
60
+ with container:
61
+ with st.form(key='my_form', clear_on_submit=True):
62
+ user_input = st.text_input('Query:', placeholder="Talk to your csv data here:", key='input')
63
+ submit_button = st.form_submit_button(label='Send')
64
+
65
+ if submit_button and user_input:
66
+ output = conversational_chat(user_input)
67
+
68
+ st.session_state['past'].append(user_input)
69
+ st.session_state['generated'].append(output)
70
+
71
+ if st.session_state['generated']:
72
+ with response_container:
73
+ for i in range(len(st.session_state['generated'])):
74
+ message(st.session_state['past'][i], is_user=True, key=str(i) +'_user', avatar_style="big-smile")
75
+ message(st.session_state['generated'][i], key=str(i), avatar_style="thumbs")
requirements.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ streamlit
2
+ streamlit-chat
3
+ pypdf
4
+ langchain
5
+ torch
6
+ accelerate
7
+ bitsandbytes
8
+ transformers
9
+ sentence_transformers
10
+ faiss_cpu
11
+ ctransformers