YOLO-World-Image / demo /image_demo.py
wondervictor's picture
update lfs
f5fdf51
# Copyright (c) Tencent Inc. All rights reserved.
import os
import cv2
import argparse
import os.path as osp
import torch
from mmengine.config import Config, DictAction
from mmengine.runner.amp import autocast
from mmengine.dataset import Compose
from mmengine.utils import ProgressBar
from mmdet.apis import init_detector
from mmdet.utils import get_test_pipeline_cfg
import supervision as sv
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator(thickness=1)
MASK_ANNOTATOR = sv.MaskAnnotator()
class LabelAnnotator(sv.LabelAnnotator):
@staticmethod
def resolve_text_background_xyxy(
center_coordinates,
text_wh,
position,
):
center_x, center_y = center_coordinates
text_w, text_h = text_wh
return center_x, center_y, center_x + text_w, center_y + text_h
LABEL_ANNOTATOR = LabelAnnotator(text_padding=4,
text_scale=0.5,
text_thickness=1)
def parse_args():
parser = argparse.ArgumentParser(description='YOLO-World Demo')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument('image', help='image path, include image file or dir.')
parser.add_argument(
'text',
help=
'text prompts, including categories separated by a comma or a txt file with each line as a prompt.'
)
parser.add_argument('--topk',
default=100,
type=int,
help='keep topk predictions.')
parser.add_argument('--threshold',
default=0.1,
type=float,
help='confidence score threshold for predictions.')
parser.add_argument('--device',
default='cuda:0',
help='device used for inference.')
parser.add_argument('--show',
action='store_true',
help='show the detection results.')
parser.add_argument(
'--annotation',
action='store_true',
help='save the annotated detection results as yolo text format.')
parser.add_argument('--amp',
action='store_true',
help='use mixed precision for inference.')
parser.add_argument('--output-dir',
default='demo_outputs',
help='the directory to save outputs')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
def inference_detector(model,
image,
texts,
test_pipeline,
max_dets=100,
score_thr=0.3,
output_dir='./work_dir',
use_amp=False,
show=False,
annotation=False):
data_info = dict(img_id=0, img_path=image, texts=texts)
data_info = test_pipeline(data_info)
data_batch = dict(inputs=data_info['inputs'].unsqueeze(0),
data_samples=[data_info['data_samples']])
with autocast(enabled=use_amp), torch.no_grad():
output = model.test_step(data_batch)[0]
pred_instances = output.pred_instances
pred_instances = pred_instances[pred_instances.scores.float() >
score_thr]
if len(pred_instances.scores) > max_dets:
indices = pred_instances.scores.float().topk(max_dets)[1]
pred_instances = pred_instances[indices]
pred_instances = pred_instances.cpu().numpy()
if 'masks' in pred_instances:
masks = pred_instances['masks']
else:
masks = None
detections = sv.Detections(xyxy=pred_instances['bboxes'],
class_id=pred_instances['labels'],
confidence=pred_instances['scores'],
mask=masks)
labels = [
f"{texts[class_id][0]} {confidence:0.2f}" for class_id, confidence in
zip(detections.class_id, detections.confidence)
]
# label images
image = cv2.imread(image_path)
anno_image = image.copy()
image = BOUNDING_BOX_ANNOTATOR.annotate(image, detections)
image = LABEL_ANNOTATOR.annotate(image, detections, labels=labels)
if masks is not None:
image = MASK_ANNOTATOR.annotate(image, detections)
cv2.imwrite(osp.join(output_dir, osp.basename(image_path)), image)
if annotation:
images_dict = {}
annotations_dict = {}
images_dict[osp.basename(image_path)] = anno_image
annotations_dict[osp.basename(image_path)] = detections
ANNOTATIONS_DIRECTORY = os.makedirs(r"./annotations", exist_ok=True)
MIN_IMAGE_AREA_PERCENTAGE = 0.002
MAX_IMAGE_AREA_PERCENTAGE = 0.80
APPROXIMATION_PERCENTAGE = 0.75
sv.DetectionDataset(
classes=texts, images=images_dict,
annotations=annotations_dict).as_yolo(
annotations_directory_path=ANNOTATIONS_DIRECTORY,
min_image_area_percentage=MIN_IMAGE_AREA_PERCENTAGE,
max_image_area_percentage=MAX_IMAGE_AREA_PERCENTAGE,
approximation_percentage=APPROXIMATION_PERCENTAGE)
if show:
cv2.imshow('Image', image) # Provide window name
k = cv2.waitKey(0)
if k == 27:
# wait for ESC key to exit
cv2.destroyAllWindows()
if __name__ == '__main__':
args = parse_args()
# load config
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
# init model
cfg.load_from = args.checkpoint
model = init_detector(cfg, checkpoint=args.checkpoint, device=args.device)
# init test pipeline
test_pipeline_cfg = get_test_pipeline_cfg(cfg=cfg)
# test_pipeline[0].type = 'mmdet.LoadImageFromNDArray'
test_pipeline = Compose(test_pipeline_cfg)
if args.text.endswith('.txt'):
with open(args.text) as f:
lines = f.readlines()
texts = [[t.rstrip('\r\n')] for t in lines] + [[' ']]
else:
texts = [[t.strip()] for t in args.text.split(',')] + [[' ']]
output_dir = args.output_dir
if not osp.exists(output_dir):
os.mkdir(output_dir)
# load images
if not osp.isfile(args.image):
images = [
osp.join(args.image, img) for img in os.listdir(args.image)
if img.endswith('.png') or img.endswith('.jpg')
]
else:
images = [args.image]
# reparameterize texts
model.reparameterize(texts)
progress_bar = ProgressBar(len(images))
for image_path in images:
inference_detector(model,
image_path,
texts,
test_pipeline,
args.topk,
args.threshold,
output_dir=output_dir,
use_amp=args.amp,
show=args.show,
annotation=args.annotation)
progress_bar.update()