Spaces:
Sleeping
Sleeping
import torch | |
from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
import gradio as gr | |
# Check if a GPU is available and use it, otherwise use CPU | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load the pre-trained model and tokenizer from the saved directory | |
model_path = "Blexus/Quble_Test_Model_v1_Pretrain" | |
tokenizer = GPT2Tokenizer.from_pretrained(model_path) | |
model = GPT2LMHeadModel.from_pretrained(model_path).to(device) | |
# Set model to evaluation mode | |
model.eval() | |
# Function to generate text based on input prompt | |
def generate_text(prompt): | |
# Tokenize and encode the input prompt | |
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device) | |
# Generate continuation | |
with torch.no_grad(): | |
generated_ids = model.generate( | |
input_ids, | |
max_length=50, # Maximum length of generated text | |
num_return_sequences=1, # Generate 1 sequence | |
pad_token_id=tokenizer.eos_token_id, # Use EOS token for padding | |
do_sample=True, # Enable sampling | |
top_k=50, # Top-k sampling | |
top_p=0.95 # Nucleus sampling | |
) | |
# Decode the generated text | |
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) | |
return generated_text | |
# Create a Gradio interface | |
interface = gr.Interface( | |
fn=generate_text, # Function to call when interacting with the UI | |
inputs="text", # Input type: Single-line text | |
outputs="text", # Output type: Text (the generated output) | |
title="Quble Text Generation", # Title of the UI | |
description="Enter a prompt to generate text using Quble." # Simple description | |
) | |
# Launch the Gradio app | |
interface.launch() | |