File size: 11,754 Bytes
e19912c
 
 
 
 
 
 
8571ccc
 
 
 
27240d5
e19912c
27240d5
e19912c
27240d5
 
 
 
 
 
 
 
 
 
81ba3a5
e19912c
27240d5
 
 
 
 
 
e19912c
27240d5
 
 
 
 
 
 
 
 
 
 
 
 
 
e19912c
27240d5
 
 
 
 
 
e19912c
 
 
 
 
81ba3a5
27240d5
 
 
 
 
 
 
 
 
 
 
 
e19912c
27240d5
 
4864213
 
e19912c
 
 
 
81ba3a5
e19912c
 
 
 
 
81ba3a5
 
 
93e0e7d
81ba3a5
 
93e0e7d
 
 
 
e19912c
 
 
 
 
 
 
 
 
 
 
 
 
27240d5
e19912c
 
 
27240d5
e19912c
 
27240d5
 
 
 
 
 
 
5d17f75
27240d5
 
c0df0d4
 
 
27240d5
c0df0d4
 
 
 
 
 
e19912c
 
27240d5
e19912c
8571ccc
81ba3a5
e19912c
 
27240d5
 
 
 
 
 
 
 
e19912c
a0da77a
 
 
e19912c
 
 
 
 
 
 
8571ccc
e19912c
 
 
 
 
 
 
 
 
 
 
 
 
 
27240d5
 
 
e19912c
27240d5
4864213
27240d5
 
 
 
 
 
 
 
 
 
 
 
e19912c
 
 
c9641f9
e19912c
 
 
27240d5
e19912c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27240d5
e19912c
 
 
27240d5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import streamlit as st
import os
import json
from openai import AzureOpenAI
from model import invoke, create_models, configure_settings, load_documents_and_create_index, \
    create_chat_prompt_template, execute_query

meta_eip_prefix = """# META: Entrepreneurial and Intrapreneurial Potential\nMETA evaluates five traits essential for 
            entrepreneurial success: Vision, Ideation, Opportunism, Drive, and Resilience. It also measures four ‘Red 
            Flags’ or derailers common to the entrepreneurial personality."""

client = AzureOpenAI(azure_endpoint="https://personalityanalysisfinetuning.openai.azure.com/", api_key=os.environ.get("AZURE_OPENAI_KEY"), api_version="2024-02-01")

# Example profile (as before)
example_profile = {
    "Team": [
        {"name": "JAMES ARTHUR", "main_profile": {"VISION": {"score": 76}, "IDEATION": {"score": 73}, "OPPORTUNISM": {"score": 78}, "DRIVE": {"score": 80}, "RESILIENCE": {"score": 75}},
         "red_flag": {"HUBRIS": {"score": 80}, "MERCURIAL": {"score": 28}, "DOMINANT": {"score": 70}, "MACHIAVELLIAN": {"score": 50}}},
        {"name": "LOUSIE HART", "main_profile": {"VISION": {"score": 55}, "IDEATION": {"score": 60}, "OPPORTUNISM": {"score": 65}, "DRIVE": {"score": 70}, "RESILIENCE": {"score": 72}},
         "red_flag": {"HUBRIS": {"score": 55}, "MERCURIAL": {"score": 25}, "DOMINANT": {"score": 67}, "MACHIAVELLIAN": {"score": 30}}},
        {"name": "SIMONE LEVY", "main_profile": {"VISION": {"score": 30}, "IDEATION": {"score": 45}, "OPPORTUNISM": {"score": 20}, "DRIVE": {"score": 50}, "RESILIENCE": {"score": 32}},
         "red_flag": {"HUBRIS": {"score": 20}, "MERCURIAL": {"score": 15}, "DOMINANT": {"score": 18}, "MACHIAVELLIAN": {"score": 25}}},
        {"name": "Uri Lef", "main_profile": {"VISION": {"score": 70}, "IDEATION": {"score": 68}, "OPPORTUNISM": {"score": 73}, "DRIVE": {"score": 65}, "RESILIENCE": {"score": 30}},
         "red_flag": {"HUBRIS": {"score": 55}, "MERCURIAL": {"score": 72}, "DOMINANT": {"score": 68}, "MACHIAVELLIAN": {"score": 50}}}
    ]
}

def verify_credentials():
    if st.session_state['username'] == os.getenv("username_app") and st.session_state['password'] == os.getenv("password_app"):
        st.session_state['authenticated'] = True
    else:
        st.error("Invalid username or password")
def login_page():

    st.title("Welcome to Metaprofiling's Career Insight Analyzer Demo")
    st.write("This application provides in-depth analysis and insights into professional profiles. Please log in to continue.")

    # Description and Instructions
    st.markdown("""
        ## How to Use This Application
        - Enter your username and password in the sidebar.
        - Click on 'Login' to access the application.
        - Once logged in, you will be able to upload and analyze professional profiles.
    """)

    st.sidebar.write("Login:")
    username = st.sidebar.text_input("Username")#, key='username')
    password = st.sidebar.text_input("Password", type="password")#, key='password')

    st.session_state['username'] = username
    st.session_state['password'] = password
    st.sidebar.button("Login", on_click=verify_credentials)

# Update generate_prompt_from_profile to take selected team members
def generate_prompt_from_profile(profile, selected_members, version="TeamSummary"):
    with open('prompts.json') as f:
        prompt_sets = json.load(f)['Prompts']
        prompt_templates = prompt_sets[version]

    try:
        team_member_profiles = []
        for member in profile['Team']:
            if member['name'] in selected_members:
                profile_str = (f"{member['name']}: Main Profile - VISION: {member['main_profile']['VISION']['score']}, "
                               f"IDEATION: {member['main_profile']['IDEATION']['score']}, "
                               f"OPPORTUNISM: {member['main_profile']['OPPORTUNISM']['score']}, "
                               f"DRIVE: {member['main_profile']['DRIVE']['score']}, "
                               f"RESILIENCE: {member['main_profile']['RESILIENCE']['score']}. "
                               f"Red Flags - HUBRIS: {member['red_flag']['HUBRIS']['score']}, "
                               f"MERCURIAL: {member['red_flag']['MERCURIAL']['score']}, "
                               f"DOMINANT: {member['red_flag']['DOMINANT']['score']}, "
                               f"MACHIAVELLIAN: {member['red_flag']['MACHIAVELLIAN']['score']}.")
                team_member_profiles.append(profile_str)

        team_member_profiles_str = "\n".join(team_member_profiles)
        prompt = "\n".join(prompt_templates).replace("{{TEAM_MEMBERS}}", team_member_profiles_str)
        print(prompt)

    except KeyError as e:
        return [{"role": "system", "content": f"Error processing profile data: missing {str(e)}"}]

    message = [
        {"role": "system", "content": prompt_sets["System"][0]},
        {"role": "user", "content": prompt}
    ]
    return message

def display_profile_info(profile):
    st.markdown("### Profile Information:")
    team_members = profile["Team"]
    for member in team_members:
        st.sidebar.markdown(f"#### {member['name']}")
        main_profile = member["main_profile"]
        red_flag = member["red_flag"]
        st.sidebar.markdown("### Main Profile:")
        st.sidebar.markdown("\n".join([f"- **{attribute}**: {details['score']}" for attribute, details in main_profile.items()]))
        st.sidebar.markdown("### Red Flags:")
        st.sidebar.markdown("\n".join([f"- **{attribute}**: {details['score']}" for attribute, details in red_flag.items()]))

def logout():
    st.session_state['authenticated'] = False
    st.session_state['profile'] = None
    st.session_state['show_chat'] = None
    st.session_state['analysis'] = None
    st.rerun()
def main_app():
    sidebar_components()

    if st.button('Logout'):
        logout()

    st.title("Metaprofiling's Career Insight Analyzer Demo")

    if st.session_state['profile']:
        profile = st.session_state['profile']
        display_profile_info(profile)

        st.markdown("""
            ### Generation Temperature
            Adjust the 'Generation Temperature' to control the creativity of the AI responses.
            - A *lower temperature* (closer to 0.0) generates more predictable, conservative responses.
            - A *higher temperature* (closer to 1.0) generates more creative, diverse responses.
        """)
        st.session_state['temperature'] = st.slider("", min_value=0.0, max_value=1.0, value=0.5, step=0.01)

        st.session_state['version'] = st.selectbox("Select Prompt Version", ["METAEIP","TDOS"])

        # Add a multiselect for team member selection
        # team_member_names = [member['name'] for member in profile['Team']]
        # selected_members = st.multiselect("Select Team Members to Include in the Analysis", team_member_names, default=team_member_names)

        team_member_names = [member['name'] for member in profile['Team']]
        if st.session_state['version'] == "METAEIP":
            selected_members = st.selectbox("Select Team Member to Include in the Analysis", team_member_names)
            selected_members = [selected_members]
        else:
            selected_members = st.multiselect("Select Team Members to Include in the Analysis", team_member_names,
                                              default=team_member_names)

        if st.button(f'Analyze Profile ({st.session_state["version"]})'):
            prompt = generate_prompt_from_profile(profile, selected_members, version=st.session_state['version'])



            with st.chat_message("assistant"):
                stream = client.chat.completions.create(
                    model="personality_gpt4o",
                    temperature=st.session_state['temperature'],
                    max_tokens=3000,
                    frequency_penalty=0.2,
                    presence_penalty=0.2,
                    messages=prompt,
                    stream=True
                )

            if st.session_state['version'] == "METAEIP":
                st.write(meta_eip_prefix)

            response = st.write_stream(stream)

            st.session_state['analysis'] = response
            st.session_state['show_chat'] = True
            st.rerun()

        if st.session_state['analysis']:
            st.write(meta_eip_prefix)
            st.markdown(st.session_state['analysis'])

    else:
        st.write("Please upload a profile JSON file or use the example profile.")

def sidebar_components():
    with st.sidebar:
        if st.button('Reset'):
            st.session_state['profile'] = None
            st.session_state['show_chat'] = None
            st.session_state['analysis'] = None
            st.rerun()

        if not st.session_state['show_chat']:
            st.markdown("### JSON File Requirements:")
            st.markdown("1. Must contain Team as top-level keys.")
            st.markdown("2. Both keys should have dictionary values.")

            uploaded_file = st.file_uploader("", type=['json'])

            if uploaded_file is not None:
                try:
                    profile_data = json.load(uploaded_file)
                    st.session_state['profile'] = profile_data
                except json.JSONDecodeError:
                    st.error("Invalid JSON file. Please upload a valid JSON file.")

            if st.button('Use Example Profile'):
                st.session_state['profile'] = example_profile
        else:
            st.sidebar.title("Chat with Our Career Advisor")
            st.sidebar.markdown("Hello, we hope you learned something about yourself in this report. This chat is here so you can ask any questions you have about your report! It’s also a great tool to get ideas about how you can use the information in your report for your personal development and achieving your current goals.")

            question_templates = [
                "What are the main risks associated with {}’s profile?",
                "What are the implications of {}’s profile for working with others?"
            ]

            questions_list = [question.format("Test Taker") for question in question_templates]
            questions_markdown = "\n\n".join([f"Q{index + 1}: {question}" for index, question in enumerate(questions_list)])

            st.sidebar.markdown("### Suggest Questions")
            st.sidebar.markdown(questions_markdown)

            user_input = st.sidebar.text_input("Ask a question about the profile analysis:")

            llm, embed_model = create_models()
            configure_settings(llm, embed_model)
            index = load_documents_and_create_index()

            if st.sidebar.button('Submit'):
                if user_input:
                    chat_prompt_template = create_chat_prompt_template(st.session_state['analysis'])
                    response = execute_query(index, chat_prompt_template, user_input)
                    st.sidebar.markdown(response)

if 'show_chat' not in st.session_state:
    st.session_state['show_chat'] = None

if 'profile' not in st.session_state:
    st.session_state['profile'] = None

if 'analysis' not in st.session_state:
    st.session_state['analysis'] = None

if 'temperature' not in st.session_state:
    st.session_state['temperature'] = 0

if 'version' not in st.session_state:
    st.session_state['version'] = ""

if 'username' not in st.session_state:
    st.session_state['username'] = ''
if 'password' not in st.session_state:
    st.session_state['password'] = ''
if 'authenticated' not in st.session_state:
    st.session_state['authenticated'] = False

if st.session_state['authenticated']:
    main_app()
else:
    login_page()