File size: 11,754 Bytes
e19912c 8571ccc 27240d5 e19912c 27240d5 e19912c 27240d5 81ba3a5 e19912c 27240d5 e19912c 27240d5 e19912c 27240d5 e19912c 81ba3a5 27240d5 e19912c 27240d5 4864213 e19912c 81ba3a5 e19912c 81ba3a5 93e0e7d 81ba3a5 93e0e7d e19912c 27240d5 e19912c 27240d5 e19912c 27240d5 5d17f75 27240d5 c0df0d4 27240d5 c0df0d4 e19912c 27240d5 e19912c 8571ccc 81ba3a5 e19912c 27240d5 e19912c a0da77a e19912c 8571ccc e19912c 27240d5 e19912c 27240d5 4864213 27240d5 e19912c c9641f9 e19912c 27240d5 e19912c 27240d5 e19912c 27240d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import streamlit as st
import os
import json
from openai import AzureOpenAI
from model import invoke, create_models, configure_settings, load_documents_and_create_index, \
create_chat_prompt_template, execute_query
meta_eip_prefix = """# META: Entrepreneurial and Intrapreneurial Potential\nMETA evaluates five traits essential for
entrepreneurial success: Vision, Ideation, Opportunism, Drive, and Resilience. It also measures four ‘Red
Flags’ or derailers common to the entrepreneurial personality."""
client = AzureOpenAI(azure_endpoint="https://personalityanalysisfinetuning.openai.azure.com/", api_key=os.environ.get("AZURE_OPENAI_KEY"), api_version="2024-02-01")
# Example profile (as before)
example_profile = {
"Team": [
{"name": "JAMES ARTHUR", "main_profile": {"VISION": {"score": 76}, "IDEATION": {"score": 73}, "OPPORTUNISM": {"score": 78}, "DRIVE": {"score": 80}, "RESILIENCE": {"score": 75}},
"red_flag": {"HUBRIS": {"score": 80}, "MERCURIAL": {"score": 28}, "DOMINANT": {"score": 70}, "MACHIAVELLIAN": {"score": 50}}},
{"name": "LOUSIE HART", "main_profile": {"VISION": {"score": 55}, "IDEATION": {"score": 60}, "OPPORTUNISM": {"score": 65}, "DRIVE": {"score": 70}, "RESILIENCE": {"score": 72}},
"red_flag": {"HUBRIS": {"score": 55}, "MERCURIAL": {"score": 25}, "DOMINANT": {"score": 67}, "MACHIAVELLIAN": {"score": 30}}},
{"name": "SIMONE LEVY", "main_profile": {"VISION": {"score": 30}, "IDEATION": {"score": 45}, "OPPORTUNISM": {"score": 20}, "DRIVE": {"score": 50}, "RESILIENCE": {"score": 32}},
"red_flag": {"HUBRIS": {"score": 20}, "MERCURIAL": {"score": 15}, "DOMINANT": {"score": 18}, "MACHIAVELLIAN": {"score": 25}}},
{"name": "Uri Lef", "main_profile": {"VISION": {"score": 70}, "IDEATION": {"score": 68}, "OPPORTUNISM": {"score": 73}, "DRIVE": {"score": 65}, "RESILIENCE": {"score": 30}},
"red_flag": {"HUBRIS": {"score": 55}, "MERCURIAL": {"score": 72}, "DOMINANT": {"score": 68}, "MACHIAVELLIAN": {"score": 50}}}
]
}
def verify_credentials():
if st.session_state['username'] == os.getenv("username_app") and st.session_state['password'] == os.getenv("password_app"):
st.session_state['authenticated'] = True
else:
st.error("Invalid username or password")
def login_page():
st.title("Welcome to Metaprofiling's Career Insight Analyzer Demo")
st.write("This application provides in-depth analysis and insights into professional profiles. Please log in to continue.")
# Description and Instructions
st.markdown("""
## How to Use This Application
- Enter your username and password in the sidebar.
- Click on 'Login' to access the application.
- Once logged in, you will be able to upload and analyze professional profiles.
""")
st.sidebar.write("Login:")
username = st.sidebar.text_input("Username")#, key='username')
password = st.sidebar.text_input("Password", type="password")#, key='password')
st.session_state['username'] = username
st.session_state['password'] = password
st.sidebar.button("Login", on_click=verify_credentials)
# Update generate_prompt_from_profile to take selected team members
def generate_prompt_from_profile(profile, selected_members, version="TeamSummary"):
with open('prompts.json') as f:
prompt_sets = json.load(f)['Prompts']
prompt_templates = prompt_sets[version]
try:
team_member_profiles = []
for member in profile['Team']:
if member['name'] in selected_members:
profile_str = (f"{member['name']}: Main Profile - VISION: {member['main_profile']['VISION']['score']}, "
f"IDEATION: {member['main_profile']['IDEATION']['score']}, "
f"OPPORTUNISM: {member['main_profile']['OPPORTUNISM']['score']}, "
f"DRIVE: {member['main_profile']['DRIVE']['score']}, "
f"RESILIENCE: {member['main_profile']['RESILIENCE']['score']}. "
f"Red Flags - HUBRIS: {member['red_flag']['HUBRIS']['score']}, "
f"MERCURIAL: {member['red_flag']['MERCURIAL']['score']}, "
f"DOMINANT: {member['red_flag']['DOMINANT']['score']}, "
f"MACHIAVELLIAN: {member['red_flag']['MACHIAVELLIAN']['score']}.")
team_member_profiles.append(profile_str)
team_member_profiles_str = "\n".join(team_member_profiles)
prompt = "\n".join(prompt_templates).replace("{{TEAM_MEMBERS}}", team_member_profiles_str)
print(prompt)
except KeyError as e:
return [{"role": "system", "content": f"Error processing profile data: missing {str(e)}"}]
message = [
{"role": "system", "content": prompt_sets["System"][0]},
{"role": "user", "content": prompt}
]
return message
def display_profile_info(profile):
st.markdown("### Profile Information:")
team_members = profile["Team"]
for member in team_members:
st.sidebar.markdown(f"#### {member['name']}")
main_profile = member["main_profile"]
red_flag = member["red_flag"]
st.sidebar.markdown("### Main Profile:")
st.sidebar.markdown("\n".join([f"- **{attribute}**: {details['score']}" for attribute, details in main_profile.items()]))
st.sidebar.markdown("### Red Flags:")
st.sidebar.markdown("\n".join([f"- **{attribute}**: {details['score']}" for attribute, details in red_flag.items()]))
def logout():
st.session_state['authenticated'] = False
st.session_state['profile'] = None
st.session_state['show_chat'] = None
st.session_state['analysis'] = None
st.rerun()
def main_app():
sidebar_components()
if st.button('Logout'):
logout()
st.title("Metaprofiling's Career Insight Analyzer Demo")
if st.session_state['profile']:
profile = st.session_state['profile']
display_profile_info(profile)
st.markdown("""
### Generation Temperature
Adjust the 'Generation Temperature' to control the creativity of the AI responses.
- A *lower temperature* (closer to 0.0) generates more predictable, conservative responses.
- A *higher temperature* (closer to 1.0) generates more creative, diverse responses.
""")
st.session_state['temperature'] = st.slider("", min_value=0.0, max_value=1.0, value=0.5, step=0.01)
st.session_state['version'] = st.selectbox("Select Prompt Version", ["METAEIP","TDOS"])
# Add a multiselect for team member selection
# team_member_names = [member['name'] for member in profile['Team']]
# selected_members = st.multiselect("Select Team Members to Include in the Analysis", team_member_names, default=team_member_names)
team_member_names = [member['name'] for member in profile['Team']]
if st.session_state['version'] == "METAEIP":
selected_members = st.selectbox("Select Team Member to Include in the Analysis", team_member_names)
selected_members = [selected_members]
else:
selected_members = st.multiselect("Select Team Members to Include in the Analysis", team_member_names,
default=team_member_names)
if st.button(f'Analyze Profile ({st.session_state["version"]})'):
prompt = generate_prompt_from_profile(profile, selected_members, version=st.session_state['version'])
with st.chat_message("assistant"):
stream = client.chat.completions.create(
model="personality_gpt4o",
temperature=st.session_state['temperature'],
max_tokens=3000,
frequency_penalty=0.2,
presence_penalty=0.2,
messages=prompt,
stream=True
)
if st.session_state['version'] == "METAEIP":
st.write(meta_eip_prefix)
response = st.write_stream(stream)
st.session_state['analysis'] = response
st.session_state['show_chat'] = True
st.rerun()
if st.session_state['analysis']:
st.write(meta_eip_prefix)
st.markdown(st.session_state['analysis'])
else:
st.write("Please upload a profile JSON file or use the example profile.")
def sidebar_components():
with st.sidebar:
if st.button('Reset'):
st.session_state['profile'] = None
st.session_state['show_chat'] = None
st.session_state['analysis'] = None
st.rerun()
if not st.session_state['show_chat']:
st.markdown("### JSON File Requirements:")
st.markdown("1. Must contain Team as top-level keys.")
st.markdown("2. Both keys should have dictionary values.")
uploaded_file = st.file_uploader("", type=['json'])
if uploaded_file is not None:
try:
profile_data = json.load(uploaded_file)
st.session_state['profile'] = profile_data
except json.JSONDecodeError:
st.error("Invalid JSON file. Please upload a valid JSON file.")
if st.button('Use Example Profile'):
st.session_state['profile'] = example_profile
else:
st.sidebar.title("Chat with Our Career Advisor")
st.sidebar.markdown("Hello, we hope you learned something about yourself in this report. This chat is here so you can ask any questions you have about your report! It’s also a great tool to get ideas about how you can use the information in your report for your personal development and achieving your current goals.")
question_templates = [
"What are the main risks associated with {}’s profile?",
"What are the implications of {}’s profile for working with others?"
]
questions_list = [question.format("Test Taker") for question in question_templates]
questions_markdown = "\n\n".join([f"Q{index + 1}: {question}" for index, question in enumerate(questions_list)])
st.sidebar.markdown("### Suggest Questions")
st.sidebar.markdown(questions_markdown)
user_input = st.sidebar.text_input("Ask a question about the profile analysis:")
llm, embed_model = create_models()
configure_settings(llm, embed_model)
index = load_documents_and_create_index()
if st.sidebar.button('Submit'):
if user_input:
chat_prompt_template = create_chat_prompt_template(st.session_state['analysis'])
response = execute_query(index, chat_prompt_template, user_input)
st.sidebar.markdown(response)
if 'show_chat' not in st.session_state:
st.session_state['show_chat'] = None
if 'profile' not in st.session_state:
st.session_state['profile'] = None
if 'analysis' not in st.session_state:
st.session_state['analysis'] = None
if 'temperature' not in st.session_state:
st.session_state['temperature'] = 0
if 'version' not in st.session_state:
st.session_state['version'] = ""
if 'username' not in st.session_state:
st.session_state['username'] = ''
if 'password' not in st.session_state:
st.session_state['password'] = ''
if 'authenticated' not in st.session_state:
st.session_state['authenticated'] = False
if st.session_state['authenticated']:
main_app()
else:
login_page()
|