File size: 17,191 Bytes
e19912c
 
 
 
 
 
 
d079e5c
e19912c
 
 
2455425
81ba3a5
 
 
 
2455425
81ba3a5
 
2455425
81ba3a5
 
2455425
81ba3a5
 
2455425
81ba3a5
 
2455425
81ba3a5
 
 
 
2455425
81ba3a5
 
2455425
81ba3a5
 
2455425
81ba3a5
 
2455425
81ba3a5
 
 
 
 
 
 
2455425
81ba3a5
 
2455425
81ba3a5
 
2455425
81ba3a5
 
2455425
81ba3a5
 
2455425
81ba3a5
 
 
 
2455425
81ba3a5
 
2455425
81ba3a5
 
2455425
81ba3a5
 
2455425
81ba3a5
 
 
 
 
 
 
2455425
81ba3a5
 
2455425
81ba3a5
 
2455425
81ba3a5
 
2455425
81ba3a5
 
2455425
81ba3a5
 
 
 
2455425
81ba3a5
 
2455425
81ba3a5
 
2455425
81ba3a5
 
2455425
81ba3a5
 
 
 
 
 
 
2455425
81ba3a5
 
2455425
81ba3a5
 
2455425
81ba3a5
 
2455425
81ba3a5
 
2455425
81ba3a5
 
 
 
2455425
81ba3a5
 
2455425
81ba3a5
 
2455425
81ba3a5
 
2455425
81ba3a5
 
 
 
 
e19912c
 
d079e5c
 
 
 
 
 
 
 
 
 
 
 
e19912c
 
 
81ba3a5
e19912c
 
 
 
 
81ba3a5
e19912c
81ba3a5
 
 
 
 
 
 
 
 
 
 
 
e19912c
81ba3a5
 
 
80c5685
e19912c
4864213
 
e19912c
 
 
 
 
81ba3a5
e19912c
 
96125b1
e19912c
 
 
 
 
 
81ba3a5
 
 
93e0e7d
81ba3a5
 
93e0e7d
 
 
 
e19912c
2beb254
 
 
 
 
 
 
 
e19912c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8054d7f
e19912c
 
 
 
 
 
a0da77a
 
 
81ba3a5
e19912c
 
d079e5c
e19912c
c253dbd
e19912c
 
 
 
 
a0da77a
 
 
e19912c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcea1fa
e19912c
 
 
 
 
 
 
 
 
2beb254
 
 
 
 
e19912c
 
 
 
 
 
 
 
 
 
 
 
 
4864213
e19912c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import streamlit as st
import os
import json
from openai import AzureOpenAI
from model import invoke, create_models, configure_settings, load_documents_and_create_index, \
    create_chat_prompt_template, execute_query

client = AzureOpenAI(azure_endpoint = "https://personalityanalysisfinetuning.openai.azure.com/",api_key=os.environ.get("AZURE_OPENAI_KEY"),  api_version="2024-02-01")


example_profile = {
  "Team": [
    {
      "name": "JAMES ARTHUR",
      "main_profile": {
        "VISION": {
          "score": 76
        },
        "IDEATION": {
          "score": 73
        },
        "OPPORTUNISM": {
          "score": 78
        },
        "DRIVE": {
          "score": 80
        },
        "RESILIENCE": {
          "score": 75
        }
      },
      "red_flag": {
        "HUBRIS": {
          "score": 80
        },
        "MERCURIAL": {
          "score": 28
        },
        "DOMINANT": {
          "score": 70
        },
        "MACHIAVELLIAN": {
          "score": 50
        }
      }
    },
    {
      "name": "LOUSIE HART",
      "main_profile": {
        "VISION": {
          "score": 55
        },
        "IDEATION": {
          "score": 60
        },
        "OPPORTUNISM": {
          "score": 65
        },
        "DRIVE": {
          "score": 70
        },
        "RESILIENCE": {
          "score": 72
        }
      },
      "red_flag": {
        "HUBRIS": {
          "score": 55
        },
        "MERCURIAL": {
          "score": 25
        },
        "DOMINANT": {
          "score": 67
        },
        "MACHIAVELLIAN": {
          "score": 30
        }
      }
    },
    {
      "name": "SIMONE LEVY",
      "main_profile": {
        "VISION": {
          "score": 30
        },
        "IDEATION": {
          "score": 45
        },
        "OPPORTUNISM": {
          "score": 20
        },
        "DRIVE": {
          "score": 50
        },
        "RESILIENCE": {
          "score": 32
        }
      },
      "red_flag": {
        "HUBRIS": {
          "score": 20
        },
        "MERCURIAL": {
          "score": 15
        },
        "DOMINANT": {
          "score": 18
        },
        "MACHIAVELLIAN": {
          "score": 25
        }
      }
    },
    {
      "name": "Uri Lef",
      "main_profile": {
        "VISION": {
          "score": 70
        },
        "IDEATION": {
          "score": 68
        },
        "OPPORTUNISM": {
          "score": 73
        },
        "DRIVE": {
          "score": 65
        },
        "RESILIENCE": {
          "score": 30
        }
      },
      "red_flag": {
        "HUBRIS": {
          "score": 55
        },
        "MERCURIAL": {
          "score": 72
        },
        "DOMINANT": {
          "score": 68
        },
        "MACHIAVELLIAN": {
          "score": 50
        }
      }
    }
  ]
}

# Function to generate a completion using OpenAI API
# def generate_one_completion(message, temperature):
#     response = client.chat.completions.create(
#         model="personality_gpt4o",
#         temperature=temperature,
#         max_tokens=1000,  # Adjust based on desired response length
#         frequency_penalty=0.2,  # To avoid repetition
#         presence_penalty=0.2,  # To introduce new topics
#         messages= message,
#         stream=False
#     )
#
#     return response

import json

def generate_prompt_from_profile(profile, version="TeamSummary"):
    with open('prompts.json') as f:
        prompt_sets = json.load(f)['Prompts']
        prompt_templates = prompt_sets[version]

    try:
        team_members = profile['Team']

        team_member_profiles = []
        for member in team_members:
            profile = f"{member['name']}: Main Profile - VISION: {member['main_profile']['VISION']['score']}, " \
                      f"IDEATION: {member['main_profile']['IDEATION']['score']}, " \
                      f"OPPORTUNISM: {member['main_profile']['OPPORTUNISM']['score']}, " \
                      f"DRIVE: {member['main_profile']['DRIVE']['score']}, " \
                      f"RESILIENCE: {member['main_profile']['RESILIENCE']['score']}. " \
                      f"Red Flags - HUBRIS: {member['red_flag']['HUBRIS']['score']}, " \
                      f"MERCURIAL: {member['red_flag']['MERCURIAL']['score']}, " \
                      f"DOMINANT: {member['red_flag']['DOMINANT']['score']}, " \
                      f"MACHIAVELLIAN: {member['red_flag']['MACHIAVELLIAN']['score']}."
            team_member_profiles.append(profile)

        # Join the team member profiles into a single string
        team_member_profiles_str = "\n".join(team_member_profiles)

        prompt =  "\n".join(prompt_templates).replace("{{TEAM_MEMBERS}}", team_member_profiles_str)

        print(prompt)


    except KeyError as e:
        return [{"role": "system", "content": f"Error processing profile data: missing {str(e)}"}]

    message = [
        {"role": "system", "content": prompt_sets["System"][0]},
        {"role": "user", "content": prompt}
    ]
    print(prompt)

    return message


def display_profile_info(profile):

    st.markdown("### Profile Information:")
    team_members = profile["Team"]
    for member in team_members:
        st.sidebar.markdown(f"#### {member['name']}")
        main_profile = member["main_profile"]
        red_flag = member["red_flag"]
        st.sidebar.markdown("### Main Profile:")
        st.sidebar.markdown("\n".join([f"- **{attribute}**: {details['score']}" for attribute, details in main_profile.items()]))
        st.sidebar.markdown("### Red Flags:")
        st.sidebar.markdown("\n".join([f"- **{attribute}**: {details['score']}" for attribute, details in red_flag.items()]))

# def validate_json(profile):
#     required_keys = ['Team']
#     for key in required_keys:
#         if key not in profile:
#             return False, f"Key '{key}' is missing."
#         if not isinstance(profile[key], dict):
#             return False, f"'{key}' should be a dictionary."
#     return True, "JSON structure is valid."
def logout():
    st.session_state['authenticated'] = False
    st.session_state['profile'] = None
    st.session_state['show_chat'] = None
    st.session_state['analysis'] = None
    st.rerun()


def main_app():

    sidebar_components()

    if st.button('Logout'):
        logout()

    # Streamlit app
    st.title('Metaprofiling\'s Career Insight Analyzer Demo')


    # Check if a profile is selected
    if st.session_state['profile']:
        profile = st.session_state['profile']
        display_profile_info(profile)  # Display the profile information

        st.markdown("""
                ### Generation Temperature
                Adjust the 'Generation Temperature' to control the creativity of the AI responses.
                - A *lower temperature* (closer to 0.0) generates more predictable, conservative responses.
                - A *higher temperature* (closer to 1.0) generates more creative, diverse responses.
            """)
        # Temperature slider
        st.session_state['temperature'] = st.slider("",min_value=0.0, max_value=1.0, value=0.5, step=0.01)

        # Allow user to choose from different versions of the prompt
        st.session_state['version'] = st.selectbox("Select Prompt Version", ["TDOS"])
        # Generate and display prompt

        if st.button(f'Analyze Profile ({st.session_state["version"]})'):
            #with st.spinner('Generating completion...'):
            prompt = generate_prompt_from_profile(profile, version=st.session_state['version'])

            meta_eip_prefix = """# META: Entrepreneurial and Intrapreneurial Potential\nMETA evaluates five traits essential for 
            entrepreneurial success: Vision, Ideation, Opportunism, Drive, and Resilience. It also measures four ‘Red 
            Flags’ or derailers common to the entrepreneurial personality."""

            with st.chat_message("assistant"):
                stream = client.chat.completions.create(
                model="personality_gpt4o",
                temperature=st.session_state['temperature'],
                max_tokens=3000,  # Adjust based on desired response length
                frequency_penalty=0.2,  # To avoid repetition
                presence_penalty=0.2,  # To introduce new topics
                messages= prompt,
                stream=True)

            if st.session_state['version'] == "METAEIP":
                st.write(meta_eip_prefix)

            response = st.write_stream(stream)
            #st.markdown(response_test_taker)

            st.session_state['analysis'] = response
            st.session_state['show_chat'] = True
            st.rerun()

        # display the response
        if st.session_state['analysis']:
            st.markdown(st.session_state['analysis'])

    else:
        st.write("Please upload a profile JSON file or use the example profile.")


# Function to verify credentials and set the session state
def verify_credentials():
    if st.session_state['username'] == os.getenv("username_app") and st.session_state['password'] == os.getenv("password_app"):
        st.session_state['authenticated'] = True
    else:
        st.error("Invalid username or password")


# Login page
def login_page():

    st.title("Welcome to Metaprofiling's Career Insight Analyzer Demo")
    st.write("This application provides in-depth analysis and insights into professional profiles. Please log in to continue.")

    # Description and Instructions
    st.markdown("""
        ## How to Use This Application
        - Enter your username and password in the sidebar.
        - Click on 'Login' to access the application.
        - Once logged in, you will be able to upload and analyze professional profiles.
    """)

    st.sidebar.write("Login:")
    username = st.sidebar.text_input("Username")#, key='username')
    password = st.sidebar.text_input("Password", type="password")#, key='password')

    st.session_state['username'] = username
    st.session_state['password'] = password
    st.sidebar.button("Login", on_click=verify_credentials)

def sidebar_components():
    with st.sidebar:
        if st.button('Reset'):
            st.session_state['profile'] = None
            st.session_state['show_chat'] = None
            st.session_state['analysis'] = None
            st.rerun()

        if not st.session_state['show_chat']:
                # Instructions for JSON format
                st.markdown("### JSON File Requirements:")
                st.markdown("1. Must contain Team as top-level keys.")
                st.markdown("2. Both keys should have dictionary values.")

                # File uploader
                st.markdown("### Upload a profile JSON file")
                uploaded_file = st.file_uploader("", type=['json'])

                if uploaded_file is not None:
                    try:
                        profile_data = json.load(uploaded_file)
                        #valid, message = validate_json(profile_data)
                        #if valid:
                        st.session_state['profile'] = profile_data
                        #else:
                            #st.error(message)
                    except json.JSONDecodeError:
                        st.error("Invalid JSON file. Please upload a valid JSON file.")

                # Button to load example profile
                if st.button('Use Example Profile'):
                    st.session_state['profile'] = example_profile

                # elif uploaded_file is not None:
                #     st.session_state['profile'] = json.load(uploaded_file)
        else:
            st.sidebar.title("Chat with Our Career Advisor")
            st.sidebar.markdown("Hello, we hope you learned something about yourself in this report. This chat is here so you can ask any questions you have about your report!  It’s also a great tool to get ideas about how you can use the information in your report for your personal development and achieving your current goals.")



            # List of question templates where {} will be replaced with the name
            question_templates = [
                "What are the main risks associated with {}’s profile?",
                "What are the implications of {}’s profile for working with others?",
                "What conclusions might we draw from his profile about {}’s style of leadership?",
                "Looking specifically at {}'s Red Flags, are there any particular areas of concern?",
                "Based on this profile, is {} better suited as a COO or a CEO?",
                "If speed of execution is important, based on his profile, how likely is {} to be able to achieve this?",
                "How is {} likely to react to business uncertainty and disruption?",
                "Based on his profile, what should a coaching plan designed for {} focus on?"
            ]

            # Formatting each question template with the name
            questions_list = [question.format("Test Taker") for question in question_templates]

            # Prepare the questions for Markdown display
            questions_markdown = "\n\n".join(
                [f"Q{index + 1}: {question}" for index, question in enumerate(questions_list)])

            # Code to display in the app
            st.sidebar.markdown("### Suggest Questions")
            st.sidebar.markdown(questions_markdown)

            # st.sidebar.text_area("Suggested Questions", value=questions.choices[0].message.content, height=200, disabled=True)

            user_input = st.sidebar.text_input("Ask a question about the profile analysis:")

            llm, embed_model = create_models()
            configure_settings(llm, embed_model)
            index = load_documents_and_create_index()

            if st.sidebar.button('Submit'):
                if user_input:
                    # with open('prompts.json') as f:
                    #     prompt_sets = json.load(f)['Prompts']
                    #     instruction = prompt_sets['Question']


                    # instruction = (
                    #         "You are a knowledgeable advisor providing insights based on the specific analysis provided earlier. "
                    #         "Your responses should around 100 words, directly relate to the user's question, drawing on relevant details from the analysis. "
                    #         "If the user's question does not pertain to the analysis or is beyond the scope of the information provided, "
                    #         "politely decline to answer, stating that the question is outside the analysis context. Focus on delivering "
                    #         "concise, accurate, insightful, and relevant information. \n\n"
                    #         "Question: " + user_input
                    # )

                    # message = generate_prompt_from_profile(st.session_state['profile'])
                    # message.append({"role": "system", "content": st.session_state['analysis']})
                    # message.append({"role": "user", "content": "\n".join(instruction).replace('{{QUESTION}}', user_input)})

                    # with st.chat_message("assistant"):
                        # stream = client.chat.completions.create(
                        #     model="personality_gpt4",
                        #     temperature=st.session_state['temperature'],
                        #     max_tokens=500,  # Adjust based on desired response length
                        #     frequency_penalty=0.2,  # To avoid repetition
                        #     presence_penalty=0.2,  # To introduce new topics
                        #     messages=message,
                        #     stream=True
                        # )

                    chat_prompt_template = create_chat_prompt_template(st.session_state['analysis'])
                    response = execute_query(index, chat_prompt_template, user_input)

                    #response = st.write_stream(stream)


                    # output = generate_one_completion(message,st.session_state['temperature'])
                    #
                    # #st.sidebar.text_area("Response", value=output.choices[0].message.content, height=200, disabled=True)
                    st.sidebar.markdown(response)

# Display the sidebar components based on the state
if 'show_chat' not in st.session_state:
    st.session_state['show_chat'] = None

if 'profile' not in st.session_state:
    st.session_state['profile'] = None

if 'analysis' not in st.session_state:
    st.session_state['analysis'] = None

if 'temperature' not in st.session_state:
    st.session_state['temperature'] = 0

if 'version' not in st.session_state:
    st.session_state['version'] = ""

# Initialize session state for username, password, and authentication
if 'username' not in st.session_state:
    st.session_state['username'] = ''
if 'password' not in st.session_state:
    st.session_state['password'] = ''
if 'authenticated' not in st.session_state:
    st.session_state['authenticated'] = False
# Show login or main app based on authentication
if st.session_state['authenticated']:
    main_app()
else:
    login_page()