|
import gradio as gr |
|
import spaces |
|
import torch |
|
|
|
from datasets import load_dataset |
|
from transformers import ( |
|
AutoConfig, |
|
AutoTokenizer, |
|
AutoModelForCausalLM, |
|
DataCollatorForLanguageModeling, |
|
Trainer, |
|
TrainingArguments, |
|
pipeline, |
|
BitsAndBytesConfig, |
|
) |
|
|
|
|
|
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training, PeftModel |
|
|
|
|
|
|
|
|
|
|
|
TEXT_PIPELINE = None |
|
COMPARISON_PIPELINE = None |
|
NUM_EXAMPLES = 50 |
|
|
|
@spaces.GPU(duration=600) |
|
def finetune_small_subset(): |
|
""" |
|
1) Loads 'wuhp/myr1' in 4-bit quantization (QLoRA style), |
|
2) Adds LoRA adapters (trainable), |
|
3) Trains on a small subset of Magpie-Reasoning-V2-250K-CoT-Deepseek-R1-Llama-70B, |
|
4) Saves LoRA adapter to 'finetuned_myr1', |
|
5) Reloads LoRA adapters for inference in a pipeline. |
|
""" |
|
|
|
|
|
|
|
ds = load_dataset( |
|
"Magpie-Align/Magpie-Reasoning-V2-250K-CoT-Deepseek-R1-Llama-70B", |
|
split="train" |
|
) |
|
|
|
|
|
|
|
|
|
unique_ids = list(set(ds["conversation_id"])) |
|
single_id = unique_ids[0] |
|
ds = ds.filter(lambda x: x["conversation_id"] == single_id) |
|
|
|
|
|
ds = ds.select(range(min(NUM_EXAMPLES, len(ds)))) |
|
|
|
|
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
) |
|
|
|
config = AutoConfig.from_pretrained( |
|
"wuhp/myr1", |
|
subfolder="myr1", |
|
trust_remote_code=True |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
"wuhp/myr1", |
|
subfolder="myr1", |
|
trust_remote_code=True |
|
) |
|
|
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
"wuhp/myr1", |
|
subfolder="myr1", |
|
config=config, |
|
quantization_config=bnb_config, |
|
device_map="auto", |
|
trust_remote_code=True |
|
) |
|
|
|
|
|
base_model = prepare_model_for_kbit_training(base_model) |
|
|
|
|
|
lora_config = LoraConfig( |
|
r=16, |
|
lora_alpha=32, |
|
lora_dropout=0.05, |
|
bias="none", |
|
target_modules=["q_proj", "v_proj"], |
|
task_type=TaskType.CAUSAL_LM, |
|
) |
|
lora_model = get_peft_model(base_model, lora_config) |
|
|
|
|
|
def tokenize_fn(ex): |
|
""" |
|
Example: combine instruction + response |
|
into a single text. Adjust to your liking. |
|
""" |
|
|
|
text = ( |
|
f"Instruction: {ex['instruction']}\n\n" |
|
f"Response: {ex['response']}" |
|
) |
|
return tokenizer(text, truncation=True, max_length=512) |
|
|
|
ds = ds.map(tokenize_fn, batched=False, remove_columns=ds.column_names) |
|
ds.set_format("torch") |
|
|
|
collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) |
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir="finetuned_myr1", |
|
num_train_epochs=1, |
|
per_device_train_batch_size=1, |
|
gradient_accumulation_steps=2, |
|
logging_steps=5, |
|
save_steps=999999, |
|
save_total_limit=1, |
|
fp16=False, |
|
) |
|
|
|
|
|
trainer = Trainer( |
|
model=lora_model, |
|
args=training_args, |
|
train_dataset=ds, |
|
data_collator=collator, |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
trainer.model.save_pretrained("finetuned_myr1") |
|
tokenizer.save_pretrained("finetuned_myr1") |
|
|
|
|
|
base_model_2 = AutoModelForCausalLM.from_pretrained( |
|
"wuhp/myr1", |
|
subfolder="myr1", |
|
config=config, |
|
quantization_config=bnb_config, |
|
device_map="auto", |
|
trust_remote_code=True |
|
) |
|
base_model_2 = prepare_model_for_kbit_training(base_model_2) |
|
|
|
lora_model_2 = PeftModel.from_pretrained( |
|
base_model_2, |
|
"finetuned_myr1", |
|
) |
|
|
|
global TEXT_PIPELINE |
|
TEXT_PIPELINE = pipeline("text-generation", model=lora_model_2, tokenizer=tokenizer) |
|
|
|
return "Finetuning complete (QLoRA + LoRA on Magpie dataset). Model loaded for inference." |
|
|
|
def ensure_pipeline(): |
|
""" |
|
If we haven't finetuned yet (TEXT_PIPELINE is None), |
|
load the base model in 4-bit with NO LoRA. |
|
""" |
|
global TEXT_PIPELINE |
|
if TEXT_PIPELINE is None: |
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
) |
|
config = AutoConfig.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True) |
|
tokenizer = AutoTokenizer.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True) |
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
"wuhp/myr1", |
|
subfolder="myr1", |
|
config=config, |
|
quantization_config=bnb_config, |
|
device_map="auto", |
|
trust_remote_code=True |
|
) |
|
TEXT_PIPELINE = pipeline("text-generation", model=base_model, tokenizer=tokenizer) |
|
return TEXT_PIPELINE |
|
|
|
@spaces.GPU(duration=120) |
|
def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens): |
|
""" |
|
Generates text from the finetuned (LoRA) model if present, else the base model. |
|
""" |
|
pipe = ensure_pipeline() |
|
out = pipe( |
|
prompt, |
|
temperature=float(temperature), |
|
top_p=float(top_p), |
|
min_new_tokens=int(min_new_tokens), |
|
max_new_tokens=int(max_new_tokens), |
|
do_sample=True |
|
) |
|
return out[0]["generated_text"] |
|
|
|
|
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## ZeroGPU QLoRA Example for wuhp/myr1 (Magpie dataset subset)") |
|
gr.Markdown("Finetune or skip to use the base model. Then generate text below.") |
|
|
|
finetune_btn = gr.Button("Finetune 4-bit (QLoRA) on small subset of Magpie dataset (up to 10 min)") |
|
status_box = gr.Textbox(label="Finetune Status") |
|
finetune_btn.click(fn=finetune_small_subset, outputs=status_box) |
|
|
|
gr.Markdown("### Generate with myr1 (fine-tuned if done above, else base)") |
|
|
|
prompt_in = gr.Textbox(lines=3, label="Prompt") |
|
temperature = gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature") |
|
top_p = gr.Slider(0.0, 1.0, step=0.05, value=0.9, label="Top-p") |
|
min_tokens = gr.Slider(50, 1024, value=50, step=10, label="Min New Tokens") |
|
max_tokens = gr.Slider(50, 1024, value=200, step=50, label="Max New Tokens") |
|
|
|
output_box = gr.Textbox(label="Generated Text", lines=12) |
|
gen_btn = gr.Button("Generate") |
|
|
|
gen_btn.click( |
|
fn=predict, |
|
inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens], |
|
outputs=output_box |
|
) |
|
|
|
demo.launch() |
|
|