|
import gradio as gr |
|
import spaces |
|
import torch |
|
from datasets import load_dataset |
|
from transformers import ( |
|
AutoConfig, |
|
AutoTokenizer, |
|
AutoModelForCausalLM, |
|
DataCollatorForLanguageModeling, |
|
Trainer, |
|
TrainingArguments, |
|
pipeline |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NUM_EXAMPLES = 1000 |
|
|
|
|
|
TEXT_PIPELINE = None |
|
|
|
@spaces.GPU(duration=300) |
|
def finetune_small_subset(): |
|
""" |
|
1) Loads the model & tokenizer from 'wuhp/myr1'. |
|
2) Loads a small subset of WikiText-2 for language modeling. |
|
3) Runs a quick 1-epoch finetune. |
|
4) Saves model + tokenizer to 'finetuned_myr1'. |
|
5) Loads the newly trained model back into a text-generation pipeline. |
|
Returns a success message. |
|
""" |
|
|
|
|
|
|
|
|
|
ds = load_dataset("wikitext", "wikitext-2-raw-v1", split="train") |
|
|
|
ds = ds.select(range(min(NUM_EXAMPLES, len(ds)))) |
|
|
|
def format_and_tokenize(ex): |
|
|
|
return tokenizer(ex["text"], truncation=True, max_length=512) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config = AutoConfig.from_pretrained( |
|
"wuhp/myr1", |
|
subfolder="myr1", |
|
trust_remote_code=True |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
"wuhp/myr1", |
|
subfolder="myr1", |
|
trust_remote_code=True |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"wuhp/myr1", |
|
subfolder="myr1", |
|
config=config, |
|
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, |
|
device_map="auto", |
|
trust_remote_code=True |
|
) |
|
|
|
|
|
|
|
|
|
ds = ds.map(format_and_tokenize, batched=True, remove_columns=["text"]) |
|
ds.set_format("torch") |
|
|
|
|
|
|
|
|
|
collator = DataCollatorForLanguageModeling( |
|
tokenizer=tokenizer, |
|
mlm=False |
|
) |
|
|
|
|
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir="finetuned_myr1", |
|
num_train_epochs=1, |
|
per_device_train_batch_size=1, |
|
gradient_accumulation_steps=2, |
|
logging_steps=10, |
|
save_steps=999999, |
|
save_total_limit=1, |
|
fp16=torch.cuda.is_available(), |
|
|
|
) |
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=ds, |
|
data_collator=collator, |
|
) |
|
|
|
|
|
|
|
|
|
trainer.train() |
|
|
|
|
|
|
|
|
|
trainer.save_model("finetuned_myr1") |
|
tokenizer.save_pretrained("finetuned_myr1") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetuned_model = AutoModelForCausalLM.from_pretrained( |
|
"finetuned_myr1", |
|
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, |
|
device_map="auto", |
|
trust_remote_code=True |
|
) |
|
global TEXT_PIPELINE |
|
TEXT_PIPELINE = pipeline( |
|
"text-generation", |
|
model=finetuned_model, |
|
tokenizer=tokenizer |
|
) |
|
return "Finetuning complete. Model reloaded for inference!" |
|
|
|
def ensure_pipeline(): |
|
""" |
|
If TEXT_PIPELINE is None (e.g., we didn't finetune yet), |
|
let's just load the *original* model from wuhp/myr1 |
|
so that 'predict' can still run. |
|
""" |
|
global TEXT_PIPELINE |
|
if TEXT_PIPELINE is None: |
|
|
|
TEXT_PIPELINE = pipeline( |
|
"text-generation", |
|
model="wuhp/myr1/myr1", |
|
trust_remote_code=True |
|
) |
|
return TEXT_PIPELINE |
|
|
|
@spaces.GPU(duration=120) |
|
def predict(prompt, min_new_tokens=260, max_new_tokens=2600): |
|
""" |
|
Generate text from the (possibly finetuned) model. |
|
We default max_new_tokens to 2,600, but allow up to 5,000 in the UI slider. |
|
We'll also ensure a minimum of 260 tokens. |
|
""" |
|
pipe = ensure_pipeline() |
|
|
|
|
|
|
|
outputs = pipe( |
|
prompt, |
|
min_new_tokens=int(min_new_tokens), |
|
max_new_tokens=int(max_new_tokens), |
|
temperature=0.7, |
|
top_p=0.9 |
|
) |
|
return outputs[0]["generated_text"] |
|
|
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## ZeroGPU Finetuning & Long-Text Generation Demo") |
|
|
|
finetune_btn = gr.Button("Finetune on a small WikiText-2 subset (5 min limit)") |
|
finetune_status = gr.Textbox(label="Status") |
|
|
|
finetune_btn.click(fn=finetune_small_subset, outputs=finetune_status) |
|
|
|
gr.Markdown( |
|
"Once finetuning completes, or if you skip it, you can still do inference " |
|
"with either the new or original model." |
|
) |
|
|
|
prompt_in = gr.Textbox(label="Prompt", lines=3) |
|
min_tok_slider = gr.Slider( |
|
minimum=260, maximum=5000, value=260, step=10, |
|
label="Minimum New Tokens" |
|
) |
|
max_tok_slider = gr.Slider( |
|
minimum=260, maximum=5000, value=2600, step=50, |
|
label="Maximum New Tokens" |
|
) |
|
gen_btn = gr.Button("Generate") |
|
output_box = gr.Textbox(label="Generated Text", lines=12) |
|
|
|
gen_btn.click( |
|
fn=predict, |
|
inputs=[prompt_in, min_tok_slider, max_tok_slider], |
|
outputs=output_box |
|
) |
|
|
|
demo.launch() |
|
|