Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import torch
|
|
|
|
|
4 |
|
5 |
from datasets import load_dataset
|
6 |
from transformers import (
|
@@ -17,16 +19,18 @@ from transformers import (
|
|
17 |
# PEFT (LoRA / QLoRA)
|
18 |
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training, PeftModel
|
19 |
|
|
|
|
|
|
|
20 |
##############################################################################
|
21 |
-
#
|
22 |
##############################################################################
|
23 |
|
24 |
-
TEXT_PIPELINE = None
|
25 |
-
COMPARISON_PIPELINE = None
|
26 |
-
|
27 |
NUM_EXAMPLES = 50 # We'll train on 50 rows for demonstration
|
28 |
|
29 |
-
@spaces.GPU(duration=300)
|
30 |
def finetune_small_subset():
|
31 |
"""
|
32 |
1) Loads 'wuhp/myr1' in 4-bit quantization (QLoRA style),
|
@@ -42,15 +46,13 @@ def finetune_small_subset():
|
|
42 |
split="train"
|
43 |
)
|
44 |
|
45 |
-
# For demonstration, pick a single conversation_id
|
46 |
unique_ids = list(set(ds["conversation_id"]))
|
47 |
single_id = unique_ids[0]
|
48 |
ds = ds.filter(lambda x: x["conversation_id"] == single_id)
|
49 |
|
50 |
-
# Then select only NUM_EXAMPLES from that subset
|
51 |
ds = ds.select(range(min(NUM_EXAMPLES, len(ds))))
|
52 |
|
53 |
-
# --- 2) Setup 4-bit quantization
|
54 |
bnb_config = BitsAndBytesConfig(
|
55 |
load_in_4bit=True,
|
56 |
bnb_4bit_compute_dtype=torch.bfloat16, # or torch.float16
|
@@ -78,7 +80,6 @@ def finetune_small_subset():
|
|
78 |
trust_remote_code=True
|
79 |
)
|
80 |
|
81 |
-
# Prepare the model for k-bit training
|
82 |
base_model = prepare_model_for_kbit_training(base_model)
|
83 |
|
84 |
# --- 3) Create LoRA config & wrap the base model in LoRA ---
|
@@ -94,10 +95,6 @@ def finetune_small_subset():
|
|
94 |
|
95 |
# --- 4) Tokenize dataset ---
|
96 |
def tokenize_fn(ex):
|
97 |
-
"""
|
98 |
-
Combine instruction + response into a single text.
|
99 |
-
You can adjust this to include more fields or different formatting.
|
100 |
-
"""
|
101 |
text = (
|
102 |
f"Instruction: {ex['instruction']}\n\n"
|
103 |
f"Response: {ex['response']}"
|
@@ -116,27 +113,24 @@ def finetune_small_subset():
|
|
116 |
per_device_train_batch_size=1,
|
117 |
gradient_accumulation_steps=2,
|
118 |
logging_steps=5,
|
119 |
-
save_steps=999999,
|
120 |
save_total_limit=1,
|
121 |
-
fp16=False,
|
122 |
)
|
123 |
|
124 |
-
# Trainer
|
125 |
trainer = Trainer(
|
126 |
model=lora_model,
|
127 |
args=training_args,
|
128 |
train_dataset=ds,
|
129 |
data_collator=collator,
|
130 |
)
|
131 |
-
|
132 |
-
# --- 5) Train ---
|
133 |
trainer.train()
|
134 |
|
135 |
-
# ---
|
136 |
trainer.model.save_pretrained("finetuned_myr1")
|
137 |
tokenizer.save_pretrained("finetuned_myr1")
|
138 |
|
139 |
-
# ---
|
140 |
base_model_2 = AutoModelForCausalLM.from_pretrained(
|
141 |
"wuhp/myr1",
|
142 |
subfolder="myr1",
|
@@ -191,8 +185,6 @@ def ensure_comparison_pipeline():
|
|
191 |
"""
|
192 |
global COMPARISON_PIPELINE
|
193 |
if COMPARISON_PIPELINE is None:
|
194 |
-
# If you prefer 4-bit, you can define BitsAndBytesConfig here,
|
195 |
-
# but let's keep it simpler for demonstration (fp16 or bf16).
|
196 |
config = AutoConfig.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Llama-8B")
|
197 |
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Llama-8B")
|
198 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -200,18 +192,14 @@ def ensure_comparison_pipeline():
|
|
200 |
config=config,
|
201 |
device_map="auto"
|
202 |
)
|
203 |
-
COMPARISON_PIPELINE = pipeline(
|
204 |
-
"text-generation",
|
205 |
-
model=model,
|
206 |
-
tokenizer=tokenizer
|
207 |
-
)
|
208 |
return COMPARISON_PIPELINE
|
209 |
|
210 |
|
211 |
-
@spaces.GPU(duration=120)
|
212 |
def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
|
213 |
"""
|
214 |
-
|
215 |
"""
|
216 |
pipe = ensure_pipeline()
|
217 |
out = pipe(
|
@@ -225,11 +213,10 @@ def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
|
|
225 |
return out[0]["generated_text"]
|
226 |
|
227 |
|
228 |
-
@spaces.GPU(duration=120)
|
229 |
def compare_models(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
|
230 |
"""
|
231 |
-
|
232 |
-
AND from the DeepSeek model. Returns two strings.
|
233 |
"""
|
234 |
local_pipe = ensure_pipeline()
|
235 |
comp_pipe = ensure_comparison_pipeline()
|
@@ -242,8 +229,6 @@ def compare_models(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
|
|
242 |
max_new_tokens=int(max_new_tokens),
|
243 |
do_sample=True
|
244 |
)
|
245 |
-
local_text = local_out[0]["generated_text"]
|
246 |
-
|
247 |
comp_out = comp_pipe(
|
248 |
prompt,
|
249 |
temperature=float(temperature),
|
@@ -252,47 +237,205 @@ def compare_models(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
|
|
252 |
max_new_tokens=int(max_new_tokens),
|
253 |
do_sample=True
|
254 |
)
|
255 |
-
|
256 |
|
257 |
-
return local_text, comp_text
|
258 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
|
260 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
with gr.Blocks() as demo:
|
262 |
-
gr.Markdown("# QLoRA Fine-tuning &
|
263 |
-
gr.Markdown("**Fine-tune wuhp/myr1** on a small subset of the Magpie dataset, then generate or compare output with the DeepSeek model.")
|
264 |
|
265 |
finetune_btn = gr.Button("Finetune 4-bit (QLoRA) on Magpie subset (up to 5 min)")
|
266 |
status_box = gr.Textbox(label="Finetune Status")
|
267 |
-
finetune_btn.click(fn=finetune_small_subset, outputs=status_box)
|
268 |
|
269 |
-
|
270 |
|
|
|
|
|
271 |
prompt_in = gr.Textbox(lines=3, label="Prompt")
|
272 |
temperature = gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature")
|
273 |
top_p = gr.Slider(0.0, 1.0, step=0.05, value=0.9, label="Top-p")
|
274 |
-
min_tokens = gr.Slider(
|
275 |
-
max_tokens = gr.Slider(
|
276 |
|
277 |
output_box = gr.Textbox(label="myr1 Output", lines=8)
|
278 |
gen_btn = gr.Button("Generate with myr1")
|
279 |
-
|
280 |
gen_btn.click(
|
281 |
fn=predict,
|
282 |
inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens],
|
283 |
outputs=output_box
|
284 |
)
|
285 |
|
286 |
-
|
287 |
-
|
288 |
compare_btn = gr.Button("Compare")
|
289 |
-
out_local = gr.Textbox(label="myr1 Output", lines=
|
290 |
-
out_deepseek = gr.Textbox(label="DeepSeek Output", lines=
|
291 |
-
|
292 |
compare_btn.click(
|
293 |
fn=compare_models,
|
294 |
inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens],
|
295 |
outputs=[out_local, out_deepseek]
|
296 |
)
|
297 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import torch
|
4 |
+
import faiss
|
5 |
+
import numpy as np
|
6 |
|
7 |
from datasets import load_dataset
|
8 |
from transformers import (
|
|
|
19 |
# PEFT (LoRA / QLoRA)
|
20 |
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training, PeftModel
|
21 |
|
22 |
+
# For embeddings
|
23 |
+
from sentence_transformers import SentenceTransformer
|
24 |
+
|
25 |
##############################################################################
|
26 |
+
# QLoRA Demo Setup
|
27 |
##############################################################################
|
28 |
|
29 |
+
TEXT_PIPELINE = None
|
30 |
+
COMPARISON_PIPELINE = None
|
|
|
31 |
NUM_EXAMPLES = 50 # We'll train on 50 rows for demonstration
|
32 |
|
33 |
+
@spaces.GPU(duration=300)
|
34 |
def finetune_small_subset():
|
35 |
"""
|
36 |
1) Loads 'wuhp/myr1' in 4-bit quantization (QLoRA style),
|
|
|
46 |
split="train"
|
47 |
)
|
48 |
|
|
|
49 |
unique_ids = list(set(ds["conversation_id"]))
|
50 |
single_id = unique_ids[0]
|
51 |
ds = ds.filter(lambda x: x["conversation_id"] == single_id)
|
52 |
|
|
|
53 |
ds = ds.select(range(min(NUM_EXAMPLES, len(ds))))
|
54 |
|
55 |
+
# --- 2) Setup 4-bit quantization ---
|
56 |
bnb_config = BitsAndBytesConfig(
|
57 |
load_in_4bit=True,
|
58 |
bnb_4bit_compute_dtype=torch.bfloat16, # or torch.float16
|
|
|
80 |
trust_remote_code=True
|
81 |
)
|
82 |
|
|
|
83 |
base_model = prepare_model_for_kbit_training(base_model)
|
84 |
|
85 |
# --- 3) Create LoRA config & wrap the base model in LoRA ---
|
|
|
95 |
|
96 |
# --- 4) Tokenize dataset ---
|
97 |
def tokenize_fn(ex):
|
|
|
|
|
|
|
|
|
98 |
text = (
|
99 |
f"Instruction: {ex['instruction']}\n\n"
|
100 |
f"Response: {ex['response']}"
|
|
|
113 |
per_device_train_batch_size=1,
|
114 |
gradient_accumulation_steps=2,
|
115 |
logging_steps=5,
|
116 |
+
save_steps=999999,
|
117 |
save_total_limit=1,
|
118 |
+
fp16=False,
|
119 |
)
|
120 |
|
|
|
121 |
trainer = Trainer(
|
122 |
model=lora_model,
|
123 |
args=training_args,
|
124 |
train_dataset=ds,
|
125 |
data_collator=collator,
|
126 |
)
|
|
|
|
|
127 |
trainer.train()
|
128 |
|
129 |
+
# --- 5) Save LoRA adapter + tokenizer ---
|
130 |
trainer.model.save_pretrained("finetuned_myr1")
|
131 |
tokenizer.save_pretrained("finetuned_myr1")
|
132 |
|
133 |
+
# --- 6) Reload for inference
|
134 |
base_model_2 = AutoModelForCausalLM.from_pretrained(
|
135 |
"wuhp/myr1",
|
136 |
subfolder="myr1",
|
|
|
185 |
"""
|
186 |
global COMPARISON_PIPELINE
|
187 |
if COMPARISON_PIPELINE is None:
|
|
|
|
|
188 |
config = AutoConfig.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Llama-8B")
|
189 |
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Llama-8B")
|
190 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
192 |
config=config,
|
193 |
device_map="auto"
|
194 |
)
|
195 |
+
COMPARISON_PIPELINE = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
|
|
|
|
|
|
|
|
196 |
return COMPARISON_PIPELINE
|
197 |
|
198 |
|
199 |
+
@spaces.GPU(duration=120)
|
200 |
def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
|
201 |
"""
|
202 |
+
Simple single-prompt generation (no retrieval).
|
203 |
"""
|
204 |
pipe = ensure_pipeline()
|
205 |
out = pipe(
|
|
|
213 |
return out[0]["generated_text"]
|
214 |
|
215 |
|
216 |
+
@spaces.GPU(duration=120)
|
217 |
def compare_models(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
|
218 |
"""
|
219 |
+
Compare local pipeline vs. DeepSeek side-by-side.
|
|
|
220 |
"""
|
221 |
local_pipe = ensure_pipeline()
|
222 |
comp_pipe = ensure_comparison_pipeline()
|
|
|
229 |
max_new_tokens=int(max_new_tokens),
|
230 |
do_sample=True
|
231 |
)
|
|
|
|
|
232 |
comp_out = comp_pipe(
|
233 |
prompt,
|
234 |
temperature=float(temperature),
|
|
|
237 |
max_new_tokens=int(max_new_tokens),
|
238 |
do_sample=True
|
239 |
)
|
240 |
+
return local_out[0]["generated_text"], comp_out[0]["generated_text"]
|
241 |
|
|
|
242 |
|
243 |
+
###############################################################################
|
244 |
+
# Retrieval-Augmented Memory with FAISS
|
245 |
+
###############################################################################
|
246 |
+
class ConversationRetriever:
|
247 |
+
"""
|
248 |
+
A simple in-memory store + FAISS for retrieval of conversation chunks.
|
249 |
+
Each chunk is embedded via SentenceTransformer. On a new user query,
|
250 |
+
we embed the query, do similarity search, and retrieve top-k relevant chunks.
|
251 |
+
"""
|
252 |
+
|
253 |
+
def __init__(self, model_name="sentence-transformers/all-MiniLM-L6-v2", embed_dim=384):
|
254 |
+
"""
|
255 |
+
model_name: embedding model for messages
|
256 |
+
embed_dim: dimension of the embeddings from that model
|
257 |
+
"""
|
258 |
+
self.embed_model = SentenceTransformer(model_name)
|
259 |
+
self.embed_dim = embed_dim
|
260 |
|
261 |
+
# We'll store (text, vector) in FAISS. For metadata, store in python list/dict.
|
262 |
+
# For a real app, you'd probably want a more robust store.
|
263 |
+
self.index = faiss.IndexFlatL2(embed_dim)
|
264 |
+
self.texts = [] # store the raw text chunks
|
265 |
+
self.vectors = [] # store vectors (redundant but simpler to show)
|
266 |
+
self.ids = [] # store an integer ID or similar
|
267 |
+
|
268 |
+
self.id_counter = 0
|
269 |
+
|
270 |
+
def add_text(self, text):
|
271 |
+
"""
|
272 |
+
Add a new text chunk to the vector store.
|
273 |
+
Could chunk it up if desired, but here we treat the entire text as one chunk.
|
274 |
+
"""
|
275 |
+
if not text.strip():
|
276 |
+
return
|
277 |
+
|
278 |
+
emb = self.embed_model.encode([text], convert_to_numpy=True)
|
279 |
+
vec = emb[0].astype(np.float32) # shape [embed_dim]
|
280 |
+
self.index.add(vec.reshape(1, -1))
|
281 |
+
|
282 |
+
self.texts.append(text)
|
283 |
+
self.vectors.append(vec)
|
284 |
+
self.ids.append(self.id_counter)
|
285 |
+
|
286 |
+
self.id_counter += 1
|
287 |
+
|
288 |
+
def search(self, query, top_k=3):
|
289 |
+
"""
|
290 |
+
Given a query, embed it, do similarity search in FAISS, return top-k texts.
|
291 |
+
"""
|
292 |
+
q_emb = self.embed_model.encode([query], convert_to_numpy=True).astype(np.float32)
|
293 |
+
q_vec = q_emb[0].reshape(1, -1)
|
294 |
+
distances, indices = self.index.search(q_vec, top_k)
|
295 |
+
|
296 |
+
# indices is shape [1, top_k], distances is shape [1, top_k]
|
297 |
+
results = []
|
298 |
+
for dist, idx in zip(distances[0], indices[0]):
|
299 |
+
if idx < len(self.texts): # safety check
|
300 |
+
results.append((self.texts[idx], dist))
|
301 |
+
return results
|
302 |
+
|
303 |
+
|
304 |
+
###############################################################################
|
305 |
+
# Build a Chat that uses RAG
|
306 |
+
###############################################################################
|
307 |
+
retriever = ConversationRetriever() # global retriever instance
|
308 |
+
|
309 |
+
def build_rag_prompt(user_query, retrieved_chunks):
|
310 |
+
"""
|
311 |
+
Construct a prompt that includes:
|
312 |
+
- The user's new query
|
313 |
+
- A "Relevant Context" section from retrieved chunks
|
314 |
+
- "Assistant:" to let the model continue
|
315 |
+
Feel free to customize the formatting as you like.
|
316 |
+
"""
|
317 |
+
context_str = ""
|
318 |
+
for i, (chunk, dist) in enumerate(retrieved_chunks):
|
319 |
+
context_str += f"Chunk #{i+1} (similarity score ~ {dist:.2f}):\n{chunk}\n\n"
|
320 |
+
|
321 |
+
prompt = (
|
322 |
+
f"User's Query:\n{user_query}\n\n"
|
323 |
+
f"Relevant Context from Conversation:\n{context_str}"
|
324 |
+
"Assistant:"
|
325 |
+
)
|
326 |
+
return prompt
|
327 |
+
|
328 |
+
|
329 |
+
@spaces.GPU(duration=120)
|
330 |
+
def chat_rag(user_input, history, temperature, top_p, min_new_tokens, max_new_tokens):
|
331 |
+
"""
|
332 |
+
Our RAG-based chat function. We'll:
|
333 |
+
1) Add user input to FAISS
|
334 |
+
2) Retrieve top-k relevant older messages from FAISS
|
335 |
+
3) Build a prompt that includes the relevant chunks + user query
|
336 |
+
4) Generate a response from the pipeline
|
337 |
+
5) Add the assistant's response to FAISS as well
|
338 |
+
"""
|
339 |
+
pipe = ensure_pipeline()
|
340 |
+
|
341 |
+
# 1) Add the user input as a chunk to the retriever DB.
|
342 |
+
retriever.add_text(f"User: {user_input}")
|
343 |
+
|
344 |
+
# 2) Retrieve top-3 older chunks. We can skip the chunk we just added if we want to
|
345 |
+
# (since it's the same text), but for simplicity let's just do a search for user_input.
|
346 |
+
top_k = 3
|
347 |
+
results = retriever.search(user_input, top_k=top_k)
|
348 |
+
|
349 |
+
# 3) Build final prompt
|
350 |
+
prompt = build_rag_prompt(user_input, results)
|
351 |
+
|
352 |
+
# 4) Generate
|
353 |
+
output = pipe(
|
354 |
+
prompt,
|
355 |
+
temperature=float(temperature),
|
356 |
+
top_p=float(top_p),
|
357 |
+
min_new_tokens=int(min_new_tokens),
|
358 |
+
max_new_tokens=int(max_new_tokens),
|
359 |
+
do_sample=True
|
360 |
+
)[0]["generated_text"]
|
361 |
+
|
362 |
+
# We only want the new part after "Assistant:"
|
363 |
+
# Because the pipeline output includes the entire prompt + new text.
|
364 |
+
if output.startswith(prompt):
|
365 |
+
assistant_reply = output[len(prompt):].strip()
|
366 |
+
else:
|
367 |
+
assistant_reply = output.strip()
|
368 |
+
|
369 |
+
# 5) Add the assistant's response to the DB as well
|
370 |
+
retriever.add_text(f"Assistant: {assistant_reply}")
|
371 |
+
|
372 |
+
# 6) Update the chat history for display in the Gradio Chatbot
|
373 |
+
history.append([user_input, assistant_reply])
|
374 |
+
return history, history
|
375 |
+
|
376 |
+
|
377 |
+
###############################################################################
|
378 |
+
# Gradio UI
|
379 |
+
###############################################################################
|
380 |
with gr.Blocks() as demo:
|
381 |
+
gr.Markdown("# QLoRA Fine-tuning & RAG-based Chat Demo")
|
|
|
382 |
|
383 |
finetune_btn = gr.Button("Finetune 4-bit (QLoRA) on Magpie subset (up to 5 min)")
|
384 |
status_box = gr.Textbox(label="Finetune Status")
|
|
|
385 |
|
386 |
+
finetune_btn.click(fn=finetune_small_subset, outputs=status_box)
|
387 |
|
388 |
+
# Simple generation UI (no retrieval):
|
389 |
+
gr.Markdown("## Direct Generation (No Retrieval)")
|
390 |
prompt_in = gr.Textbox(lines=3, label="Prompt")
|
391 |
temperature = gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature")
|
392 |
top_p = gr.Slider(0.0, 1.0, step=0.05, value=0.9, label="Top-p")
|
393 |
+
min_tokens = gr.Slider(1, 2500, value=50, step=10, label="Min New Tokens")
|
394 |
+
max_tokens = gr.Slider(1, 2500, value=200, step=50, label="Max New Tokens")
|
395 |
|
396 |
output_box = gr.Textbox(label="myr1 Output", lines=8)
|
397 |
gen_btn = gr.Button("Generate with myr1")
|
|
|
398 |
gen_btn.click(
|
399 |
fn=predict,
|
400 |
inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens],
|
401 |
outputs=output_box
|
402 |
)
|
403 |
|
404 |
+
# Comparison UI:
|
405 |
+
gr.Markdown("## Compare myr1 vs DeepSeek")
|
406 |
compare_btn = gr.Button("Compare")
|
407 |
+
out_local = gr.Textbox(label="myr1 Output", lines=6)
|
408 |
+
out_deepseek = gr.Textbox(label="DeepSeek Output", lines=6)
|
|
|
409 |
compare_btn.click(
|
410 |
fn=compare_models,
|
411 |
inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens],
|
412 |
outputs=[out_local, out_deepseek]
|
413 |
)
|
414 |
|
415 |
+
# RAG-based Chat
|
416 |
+
gr.Markdown("## Chat with Retrieval-Augmented Memory")
|
417 |
+
with gr.Row():
|
418 |
+
with gr.Column():
|
419 |
+
chatbot = gr.Chatbot(label="RAG Chat")
|
420 |
+
chat_state = gr.State([]) # just for display
|
421 |
+
|
422 |
+
user_input = gr.Textbox(
|
423 |
+
show_label=False,
|
424 |
+
placeholder="Ask a question...",
|
425 |
+
lines=2
|
426 |
+
)
|
427 |
+
send_btn = gr.Button("Send")
|
428 |
+
|
429 |
+
# On user submit, call chat_rag
|
430 |
+
user_input.submit(
|
431 |
+
fn=chat_rag,
|
432 |
+
inputs=[user_input, chat_state, temperature, top_p, min_tokens, max_tokens],
|
433 |
+
outputs=[chat_state, chatbot]
|
434 |
+
)
|
435 |
+
send_btn.click(
|
436 |
+
fn=chat_rag,
|
437 |
+
inputs=[user_input, chat_state, temperature, top_p, min_tokens, max_tokens],
|
438 |
+
outputs=[chat_state, chatbot]
|
439 |
+
)
|
440 |
+
|
441 |
demo.launch()
|