Update app.py
Browse files
app.py
CHANGED
@@ -1,54 +1,77 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
|
|
|
|
|
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
|
5 |
-
#
|
6 |
-
# 1)
|
7 |
-
#
|
8 |
-
#
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
#
|
13 |
-
# 2)
|
14 |
-
#
|
15 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
tokenizer = AutoTokenizer.from_pretrained(
|
17 |
MODEL_REPO,
|
18 |
subfolder=SUBFOLDER,
|
19 |
trust_remote_code=True
|
20 |
)
|
21 |
|
22 |
-
|
23 |
-
# 3) Load the model
|
24 |
-
# - device_map="auto" tries to place layers on GPU and offload remainder to CPU if needed
|
25 |
-
# - torch_dtype can be float16, float32, bfloat16, etc., depending on GPU support
|
26 |
-
# ----------------------------------------------------------------
|
27 |
model = AutoModelForCausalLM.from_pretrained(
|
28 |
MODEL_REPO,
|
29 |
subfolder=SUBFOLDER,
|
30 |
trust_remote_code=True,
|
31 |
-
device_map="auto",
|
32 |
-
torch_dtype=torch.float16,
|
33 |
low_cpu_mem_usage=True
|
34 |
)
|
35 |
-
|
36 |
-
# Put model in evaluation mode
|
37 |
model.eval()
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
#
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
print("=== Starting generation ===")
|
44 |
-
# Move input tokens to the same device as model
|
45 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
46 |
-
|
47 |
try:
|
48 |
-
# Generate tokens
|
49 |
output_ids = model.generate(
|
50 |
**inputs,
|
51 |
-
max_new_tokens=
|
52 |
temperature=temperature,
|
53 |
top_p=top_p,
|
54 |
do_sample=True,
|
@@ -58,32 +81,45 @@ def generate_text(prompt, max_length=64, temperature=0.7, top_p=0.9):
|
|
58 |
except Exception as e:
|
59 |
print(f"Error during generation: {e}")
|
60 |
return str(e)
|
61 |
-
|
62 |
-
# Decode back to text (skipping special tokens)
|
63 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
64 |
|
65 |
-
|
|
|
66 |
# 5) Build a Gradio UI
|
67 |
-
#
|
68 |
demo = gr.Interface(
|
69 |
fn=generate_text,
|
70 |
inputs=[
|
71 |
gr.Textbox(
|
72 |
lines=4,
|
73 |
label="Prompt",
|
74 |
-
placeholder="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
),
|
76 |
-
gr.Slider(8, 512, value=64, step=1, label="Max New Tokens"),
|
77 |
-
gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Temperature"),
|
78 |
-
gr.Slider(0.0, 1.0, value=0.9, step=0.05, label="Top-p"),
|
79 |
],
|
80 |
outputs="text",
|
81 |
-
title="DeepSeek
|
82 |
-
description=
|
|
|
|
|
|
|
83 |
)
|
84 |
|
85 |
-
#
|
86 |
-
# 6)
|
87 |
-
#
|
88 |
if __name__ == "__main__":
|
|
|
89 |
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import ast
|
4 |
+
|
5 |
import gradio as gr
|
6 |
import torch
|
7 |
+
import streamlit as st
|
8 |
+
# No "spaces" or "transformers_gradio" imports here, since you said you want to use *your model* (myr1),
|
9 |
+
# not external Spaces demos.
|
10 |
+
|
11 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
12 |
|
13 |
+
# ------------------------------------------------------------------------------
|
14 |
+
# 1) OPTIONAL: Environment Variable Code (MY_SCRIPT_CONTENT)
|
15 |
+
# If you don't need this dynamic script execution, remove the entire block.
|
16 |
+
# ------------------------------------------------------------------------------
|
17 |
+
script_repr = os.getenv("MY_SCRIPT_CONTENT")
|
18 |
+
|
19 |
+
if script_repr:
|
20 |
+
# Attempt to parse & exec the script from environment variable
|
21 |
+
try:
|
22 |
+
script_content = ast.literal_eval(script_repr)
|
23 |
+
exec(script_content)
|
24 |
+
except (ValueError, SyntaxError) as e:
|
25 |
+
# Using Streamlit to display an error message in case this is run within a Streamlit environment
|
26 |
+
st.error(f"Error evaluating script from environment variable: {e}")
|
27 |
+
else:
|
28 |
+
print("No extra script content found in 'MY_SCRIPT_CONTENT'.")
|
29 |
|
30 |
+
# ------------------------------------------------------------------------------
|
31 |
+
# 2) Model References for "myr1" from Hugging Face
|
32 |
+
# Make sure your HF repo is "wuhp/myr1" and your actual model files are in subfolder "myr1"
|
33 |
+
# ------------------------------------------------------------------------------
|
34 |
+
MODEL_REPO = "wuhp/myr1" # The HF repository name
|
35 |
+
SUBFOLDER = "myr1" # The folder inside the repo containing config.json etc.
|
36 |
+
|
37 |
+
# ------------------------------------------------------------------------------
|
38 |
+
# 3) Load Tokenizer & Model
|
39 |
+
# trust_remote_code=True to allow custom config/modeling if you have them in the repo.
|
40 |
+
# ------------------------------------------------------------------------------
|
41 |
+
print("Loading tokenizer...")
|
42 |
tokenizer = AutoTokenizer.from_pretrained(
|
43 |
MODEL_REPO,
|
44 |
subfolder=SUBFOLDER,
|
45 |
trust_remote_code=True
|
46 |
)
|
47 |
|
48 |
+
print("Loading model...")
|
|
|
|
|
|
|
|
|
49 |
model = AutoModelForCausalLM.from_pretrained(
|
50 |
MODEL_REPO,
|
51 |
subfolder=SUBFOLDER,
|
52 |
trust_remote_code=True,
|
53 |
+
device_map="auto", # auto-shard across GPU(s) if needed, else CPU fallback
|
54 |
+
torch_dtype=torch.float16, # or torch.float32, torch.bfloat16, etc.
|
55 |
low_cpu_mem_usage=True
|
56 |
)
|
|
|
|
|
57 |
model.eval()
|
58 |
|
59 |
+
print("Model loaded successfully.")
|
60 |
+
|
61 |
+
# ------------------------------------------------------------------------------
|
62 |
+
# 4) Define Generation Function for Gradio
|
63 |
+
# ------------------------------------------------------------------------------
|
64 |
+
def generate_text(prompt, max_new_tokens=64, temperature=0.7, top_p=0.9):
|
65 |
+
"""
|
66 |
+
Generate text using the myr1 model from Hugging Face.
|
67 |
+
"""
|
68 |
print("=== Starting generation ===")
|
|
|
69 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
70 |
+
|
71 |
try:
|
|
|
72 |
output_ids = model.generate(
|
73 |
**inputs,
|
74 |
+
max_new_tokens=max_new_tokens, # limit how many tokens beyond the prompt
|
75 |
temperature=temperature,
|
76 |
top_p=top_p,
|
77 |
do_sample=True,
|
|
|
81 |
except Exception as e:
|
82 |
print(f"Error during generation: {e}")
|
83 |
return str(e)
|
84 |
+
|
|
|
85 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
86 |
|
87 |
+
|
88 |
+
# ------------------------------------------------------------------------------
|
89 |
# 5) Build a Gradio UI
|
90 |
+
# ------------------------------------------------------------------------------
|
91 |
demo = gr.Interface(
|
92 |
fn=generate_text,
|
93 |
inputs=[
|
94 |
gr.Textbox(
|
95 |
lines=4,
|
96 |
label="Prompt",
|
97 |
+
placeholder="Ask a question or start a story..."
|
98 |
+
),
|
99 |
+
gr.Slider(
|
100 |
+
minimum=8, maximum=512, step=1, value=64,
|
101 |
+
label="Max New Tokens"
|
102 |
+
),
|
103 |
+
gr.Slider(
|
104 |
+
minimum=0.0, maximum=1.5, step=0.1, value=0.7,
|
105 |
+
label="Temperature"
|
106 |
+
),
|
107 |
+
gr.Slider(
|
108 |
+
minimum=0.0, maximum=1.0, step=0.05, value=0.9,
|
109 |
+
label="Top-p (nucleus sampling)"
|
110 |
),
|
|
|
|
|
|
|
111 |
],
|
112 |
outputs="text",
|
113 |
+
title="DeepSeek myr1 Demo",
|
114 |
+
description=(
|
115 |
+
"Generates text with the 'myr1' model from the Hugging Face Hub. "
|
116 |
+
"Enter a prompt and adjust generation settings."
|
117 |
+
)
|
118 |
)
|
119 |
|
120 |
+
# ------------------------------------------------------------------------------
|
121 |
+
# 6) Launch the App
|
122 |
+
# ------------------------------------------------------------------------------
|
123 |
if __name__ == "__main__":
|
124 |
+
print("Launching Gradio demo...")
|
125 |
demo.launch()
|