Update app.py
Browse files
app.py
CHANGED
@@ -12,200 +12,172 @@ from transformers import (
|
|
12 |
pipeline
|
13 |
)
|
14 |
|
15 |
-
|
16 |
-
# ZeroGPU
|
17 |
-
#
|
18 |
-
#
|
19 |
-
|
20 |
|
21 |
-
# We'll
|
22 |
-
# Real finetuning on the entire dataset likely exceeds typical ZeroGPU time.
|
23 |
-
NUM_EXAMPLES = 1000 # or fewer to keep it quick
|
24 |
|
25 |
-
# We'll
|
26 |
-
|
27 |
|
28 |
-
@spaces.GPU(duration=300) #
|
29 |
def finetune_small_subset():
|
30 |
"""
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
"""
|
38 |
-
|
39 |
-
# -------------------------------
|
40 |
-
# A) Load a small dataset
|
41 |
-
# -------------------------------
|
42 |
ds = load_dataset("wikitext", "wikitext-2-raw-v1", split="train")
|
43 |
-
# Keep only a subset so we don't exceed time.
|
44 |
ds = ds.select(range(min(NUM_EXAMPLES, len(ds))))
|
45 |
|
46 |
-
|
47 |
-
# For standard LM, we just treat each line as text
|
48 |
-
return tokenizer(ex["text"], truncation=True, max_length=512)
|
49 |
-
|
50 |
-
# We'll define them once we have the tokenizer below.
|
51 |
-
|
52 |
-
# -------------------------------
|
53 |
-
# B) Load config, tokenizer, model from HF
|
54 |
-
# (trust_remote_code = True for custom modeling_deepseek)
|
55 |
-
# -------------------------------
|
56 |
config = AutoConfig.from_pretrained(
|
57 |
-
"wuhp/myr1",
|
58 |
subfolder="myr1",
|
59 |
trust_remote_code=True
|
60 |
)
|
61 |
tokenizer = AutoTokenizer.from_pretrained(
|
62 |
-
"wuhp/myr1",
|
63 |
subfolder="myr1",
|
64 |
trust_remote_code=True
|
65 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
model = AutoModelForCausalLM.from_pretrained(
|
67 |
"wuhp/myr1",
|
68 |
subfolder="myr1",
|
69 |
config=config,
|
70 |
-
|
71 |
-
|
|
|
|
|
72 |
trust_remote_code=True
|
73 |
)
|
74 |
|
75 |
-
#
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
79 |
ds.set_format("torch")
|
80 |
|
81 |
-
|
82 |
-
# D) Data Collator
|
83 |
-
# -------------------------------
|
84 |
-
collator = DataCollatorForLanguageModeling(
|
85 |
-
tokenizer=tokenizer,
|
86 |
-
mlm=False
|
87 |
-
)
|
88 |
|
89 |
-
#
|
90 |
-
# E) Training Arguments + Trainer
|
91 |
-
# -------------------------------
|
92 |
training_args = TrainingArguments(
|
93 |
output_dir="finetuned_myr1",
|
94 |
-
num_train_epochs=1,
|
95 |
per_device_train_batch_size=1,
|
96 |
gradient_accumulation_steps=2,
|
97 |
logging_steps=10,
|
98 |
-
save_steps=999999,
|
99 |
save_total_limit=1,
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
102 |
)
|
103 |
|
|
|
104 |
trainer = Trainer(
|
105 |
model=model,
|
106 |
args=training_args,
|
107 |
train_dataset=ds,
|
108 |
-
data_collator=collator
|
109 |
)
|
110 |
|
111 |
-
#
|
112 |
-
# F) Train
|
113 |
-
# -------------------------------
|
114 |
trainer.train()
|
115 |
|
116 |
-
#
|
117 |
-
# G) Save local checkpoint
|
118 |
-
# -------------------------------
|
119 |
trainer.save_model("finetuned_myr1")
|
120 |
tokenizer.save_pretrained("finetuned_myr1")
|
121 |
|
122 |
-
#
|
123 |
-
# H) Reload the newly finetuned model as a pipeline
|
124 |
-
# -------------------------------
|
125 |
-
# (We do this so we can do inference in the same GPU session)
|
126 |
-
# However, if the pipeline is used *after* this function returns,
|
127 |
-
# we might need to re-load in a separate function call.
|
128 |
finetuned_model = AutoModelForCausalLM.from_pretrained(
|
129 |
"finetuned_myr1",
|
130 |
-
torch_dtype=torch.
|
131 |
device_map="auto",
|
132 |
trust_remote_code=True
|
133 |
)
|
134 |
global TEXT_PIPELINE
|
135 |
-
TEXT_PIPELINE = pipeline(
|
136 |
-
|
137 |
-
model=finetuned_model,
|
138 |
-
tokenizer=tokenizer
|
139 |
-
)
|
140 |
-
return "Finetuning complete. Model reloaded for inference!"
|
141 |
|
142 |
def ensure_pipeline():
|
143 |
"""
|
144 |
-
If
|
145 |
-
|
146 |
-
so that 'predict' can still run.
|
147 |
"""
|
148 |
global TEXT_PIPELINE
|
149 |
if TEXT_PIPELINE is None:
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
154 |
trust_remote_code=True
|
155 |
)
|
|
|
156 |
return TEXT_PIPELINE
|
157 |
|
158 |
-
@spaces.GPU(duration=120) # up to 2 minutes
|
159 |
-
def predict(prompt, min_new_tokens
|
160 |
"""
|
161 |
-
|
162 |
-
|
163 |
-
We'll also ensure a minimum of 260 tokens.
|
164 |
"""
|
165 |
-
pipe = ensure_pipeline()
|
166 |
-
|
167 |
-
# The pipeline will handle do_sample by default.
|
168 |
-
# We set a large max_new_tokens, but be careful about timeouts.
|
169 |
-
outputs = pipe(
|
170 |
prompt,
|
|
|
|
|
171 |
min_new_tokens=int(min_new_tokens),
|
172 |
max_new_tokens=int(max_new_tokens),
|
173 |
-
|
174 |
-
top_p=0.9
|
175 |
)
|
176 |
-
return
|
177 |
|
178 |
-
|
179 |
-
# Build a Gradio UI
|
180 |
-
#############################################################
|
181 |
with gr.Blocks() as demo:
|
182 |
-
gr.Markdown("## ZeroGPU Finetuning
|
183 |
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
finetune_btn.click(fn=finetune_small_subset, outputs=
|
188 |
|
189 |
-
gr.Markdown(
|
190 |
-
|
191 |
-
|
192 |
-
)
|
|
|
|
|
|
|
193 |
|
194 |
-
prompt_in = gr.Textbox(label="Prompt", lines=3)
|
195 |
-
min_tok_slider = gr.Slider(
|
196 |
-
minimum=260, maximum=5000, value=260, step=10,
|
197 |
-
label="Minimum New Tokens"
|
198 |
-
)
|
199 |
-
max_tok_slider = gr.Slider(
|
200 |
-
minimum=260, maximum=5000, value=2600, step=50,
|
201 |
-
label="Maximum New Tokens"
|
202 |
-
)
|
203 |
-
gen_btn = gr.Button("Generate")
|
204 |
output_box = gr.Textbox(label="Generated Text", lines=12)
|
|
|
205 |
|
206 |
gen_btn.click(
|
207 |
fn=predict,
|
208 |
-
inputs=[prompt_in,
|
209 |
outputs=output_box
|
210 |
)
|
211 |
|
|
|
12 |
pipeline
|
13 |
)
|
14 |
|
15 |
+
##############################################################################
|
16 |
+
# ZeroGPU constraints:
|
17 |
+
# 1) No GPU calls in top-level code
|
18 |
+
# 2) Decorate GPU-using functions with @spaces.GPU(...)
|
19 |
+
##############################################################################
|
20 |
|
21 |
+
TEXT_PIPELINE = None # We'll store an inference pipeline after training (if any).
|
|
|
|
|
22 |
|
23 |
+
# We'll train on a subset of WikiText-2 to keep it short for ZeroGPU demonstration.
|
24 |
+
NUM_EXAMPLES = 1000
|
25 |
|
26 |
+
@spaces.GPU(duration=300) # 5 minutes to do a quick demo train
|
27 |
def finetune_small_subset():
|
28 |
"""
|
29 |
+
Demonstration:
|
30 |
+
- Loads 'wuhp/myr1' (DeepSeek)
|
31 |
+
- Finetunes on a small subset of WikiText-2
|
32 |
+
- Disables fp16 to avoid "Attempting to unscale FP16 gradients" error
|
33 |
+
- Saves model to 'finetuned_myr1'
|
34 |
+
- Reloads as pipeline for inference
|
35 |
"""
|
36 |
+
# 1) Load dataset
|
|
|
|
|
|
|
37 |
ds = load_dataset("wikitext", "wikitext-2-raw-v1", split="train")
|
|
|
38 |
ds = ds.select(range(min(NUM_EXAMPLES, len(ds))))
|
39 |
|
40 |
+
# 2) Load config, tokenizer, model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
config = AutoConfig.from_pretrained(
|
42 |
+
"wuhp/myr1",
|
43 |
subfolder="myr1",
|
44 |
trust_remote_code=True
|
45 |
)
|
46 |
tokenizer = AutoTokenizer.from_pretrained(
|
47 |
+
"wuhp/myr1",
|
48 |
subfolder="myr1",
|
49 |
trust_remote_code=True
|
50 |
)
|
51 |
+
|
52 |
+
# If your GPU supports BF16 (e.g. A100), you can try:
|
53 |
+
# bf16 = True, and fp16 = False
|
54 |
+
# Otherwise, just keep fp16=False
|
55 |
+
# We'll do bf16=False so we definitely skip half-precision
|
56 |
+
# (which avoids the "Attempting to unscale FP16 gradients" error).
|
57 |
+
bf16 = False
|
58 |
+
fp16 = False
|
59 |
+
|
60 |
model = AutoModelForCausalLM.from_pretrained(
|
61 |
"wuhp/myr1",
|
62 |
subfolder="myr1",
|
63 |
config=config,
|
64 |
+
# Only auto-detect if we do normal float32 or bfloat16.
|
65 |
+
# (We do not want normal fp16 in training.)
|
66 |
+
torch_dtype=torch.bfloat16 if bf16 else torch.float32,
|
67 |
+
device_map="auto",
|
68 |
trust_remote_code=True
|
69 |
)
|
70 |
|
71 |
+
# 3) Tokenize data
|
72 |
+
def tokenize_fn(ex):
|
73 |
+
return tokenizer(ex["text"], truncation=True, max_length=512)
|
74 |
+
|
75 |
+
ds = ds.map(tokenize_fn, batched=True, remove_columns=["text"])
|
76 |
ds.set_format("torch")
|
77 |
|
78 |
+
collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
# 4) TrainingArguments
|
|
|
|
|
81 |
training_args = TrainingArguments(
|
82 |
output_dir="finetuned_myr1",
|
83 |
+
num_train_epochs=1,
|
84 |
per_device_train_batch_size=1,
|
85 |
gradient_accumulation_steps=2,
|
86 |
logging_steps=10,
|
87 |
+
save_steps=999999, # won't save mid-training
|
88 |
save_total_limit=1,
|
89 |
+
# Turn off half precision explicitly
|
90 |
+
fp16=fp16,
|
91 |
+
bf16=bf16,
|
92 |
+
# If the above doesn't fix it, remove advanced features that auto uses
|
93 |
+
# gradient scaling, or do more manual approach.
|
94 |
)
|
95 |
|
96 |
+
# 5) Build Trainer
|
97 |
trainer = Trainer(
|
98 |
model=model,
|
99 |
args=training_args,
|
100 |
train_dataset=ds,
|
101 |
+
data_collator=collator
|
102 |
)
|
103 |
|
104 |
+
# 6) Train
|
|
|
|
|
105 |
trainer.train()
|
106 |
|
107 |
+
# 7) Save final
|
|
|
|
|
108 |
trainer.save_model("finetuned_myr1")
|
109 |
tokenizer.save_pretrained("finetuned_myr1")
|
110 |
|
111 |
+
# 8) Reload the newly trained model as a pipeline
|
|
|
|
|
|
|
|
|
|
|
112 |
finetuned_model = AutoModelForCausalLM.from_pretrained(
|
113 |
"finetuned_myr1",
|
114 |
+
torch_dtype=torch.bfloat16 if bf16 else torch.float32,
|
115 |
device_map="auto",
|
116 |
trust_remote_code=True
|
117 |
)
|
118 |
global TEXT_PIPELINE
|
119 |
+
TEXT_PIPELINE = pipeline("text-generation", model=finetuned_model, tokenizer=tokenizer)
|
120 |
+
return "Finetuning complete! Model reloaded for inference."
|
|
|
|
|
|
|
|
|
121 |
|
122 |
def ensure_pipeline():
|
123 |
"""
|
124 |
+
If we haven't finetuned yet, or if TEXT_PIPELINE is None,
|
125 |
+
load the original model from 'wuhp/myr1' for inference.
|
|
|
126 |
"""
|
127 |
global TEXT_PIPELINE
|
128 |
if TEXT_PIPELINE is None:
|
129 |
+
tokenizer = AutoTokenizer.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
|
130 |
+
# We'll do float32 for inference if no BF16 or fp16.
|
131 |
+
model = AutoModelForCausalLM.from_pretrained(
|
132 |
+
"wuhp/myr1",
|
133 |
+
subfolder="myr1",
|
134 |
+
torch_dtype=torch.float32,
|
135 |
+
device_map="auto",
|
136 |
trust_remote_code=True
|
137 |
)
|
138 |
+
TEXT_PIPELINE = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
139 |
return TEXT_PIPELINE
|
140 |
|
141 |
+
@spaces.GPU(duration=120) # up to 2 minutes for text generation
|
142 |
+
def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
|
143 |
"""
|
144 |
+
Generates text from the (finetuned) pipeline or the original model.
|
145 |
+
Allows user to adjust temperature, top_p, and token range [260..5000].
|
|
|
146 |
"""
|
147 |
+
pipe = ensure_pipeline()
|
148 |
+
out = pipe(
|
|
|
|
|
|
|
149 |
prompt,
|
150 |
+
temperature=float(temperature),
|
151 |
+
top_p=float(top_p),
|
152 |
min_new_tokens=int(min_new_tokens),
|
153 |
max_new_tokens=int(max_new_tokens),
|
154 |
+
do_sample=True
|
|
|
155 |
)
|
156 |
+
return out[0]["generated_text"]
|
157 |
|
158 |
+
# Build Gradio UI
|
|
|
|
|
159 |
with gr.Blocks() as demo:
|
160 |
+
gr.Markdown("## ZeroGPU Mini-Finetuning (No FP16) + Long Text Generation")
|
161 |
|
162 |
+
# 1) Button to run finetune_small_subset()
|
163 |
+
finetune_btn = gr.Button("Finetune WikiText-2 (Subset)")
|
164 |
+
status_box = gr.Textbox(label="Finetune Status")
|
165 |
+
finetune_btn.click(fn=finetune_small_subset, outputs=status_box)
|
166 |
|
167 |
+
gr.Markdown("Use 'Generate' to produce text from either the newly finetuned or original model.")
|
168 |
+
|
169 |
+
prompt_in = gr.Textbox(lines=3, label="Prompt")
|
170 |
+
temperature = gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Temperature")
|
171 |
+
top_p = gr.Slider(0.0, 1.0, value=0.9, step=0.05, label="Top-p")
|
172 |
+
min_tokens = gr.Slider(260, 5000, value=260, step=10, label="Min New Tokens")
|
173 |
+
max_tokens = gr.Slider(260, 5000, value=500, step=50, label="Max New Tokens")
|
174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
output_box = gr.Textbox(label="Generated Text", lines=12)
|
176 |
+
gen_btn = gr.Button("Generate")
|
177 |
|
178 |
gen_btn.click(
|
179 |
fn=predict,
|
180 |
+
inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens],
|
181 |
outputs=output_box
|
182 |
)
|
183 |
|