Update app.py
Browse files
app.py
CHANGED
@@ -1,52 +1,73 @@
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import torch
|
|
|
|
|
4 |
from transformers import (
|
5 |
AutoConfig,
|
6 |
AutoTokenizer,
|
7 |
AutoModelForCausalLM,
|
8 |
-
|
9 |
)
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
config = AutoConfig.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
|
16 |
tokenizer = AutoTokenizer.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
|
17 |
model = AutoModelForCausalLM.from_pretrained(
|
18 |
"wuhp/myr1",
|
19 |
subfolder="myr1",
|
20 |
config=config,
|
21 |
-
torch_dtype=torch.float16,
|
22 |
device_map="auto",
|
23 |
trust_remote_code=True
|
24 |
)
|
25 |
-
# optional: load generation config if you have generation_config.json
|
26 |
-
text_pipeline = pipeline(
|
27 |
-
"text-generation",
|
28 |
-
model=model,
|
29 |
-
tokenizer=tokenizer
|
30 |
-
)
|
31 |
-
return text_pipeline
|
32 |
|
33 |
-
#
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
39 |
)
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
#
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
max_nt = gr.Slider(1, 200, value=64, step=1, label="Max New Tokens")
|
47 |
-
output = gr.Textbox(label="Generated Text")
|
48 |
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
51 |
|
52 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import torch
|
4 |
+
from transformers import Trainer, TrainingArguments
|
5 |
+
from datasets import load_dataset
|
6 |
from transformers import (
|
7 |
AutoConfig,
|
8 |
AutoTokenizer,
|
9 |
AutoModelForCausalLM,
|
10 |
+
DataCollatorForLanguageModeling,
|
11 |
)
|
12 |
|
13 |
+
@spaces.GPU(duration=600) # 10 minutes
|
14 |
+
def run_finetuning():
|
15 |
+
# Load dataset
|
16 |
+
ds = load_dataset("Magpie-Align/Magpie-Reasoning-V2-250K-CoT-Deepseek-R1-Llama-70B")
|
17 |
+
# maybe select a small subset (like 1000 rows) or you'll likely time out
|
18 |
+
ds_small = ds["train"].select(range(1000))
|
19 |
+
|
20 |
+
# Format example:
|
21 |
+
def format_row(ex):
|
22 |
+
return {"text": f"User: {ex['instruction']}\nAssistant: {ex['response']}"}
|
23 |
+
ds_small = ds_small.map(format_row)
|
24 |
+
|
25 |
+
# Load config/tokenizer/model with trust_remote_code
|
26 |
config = AutoConfig.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
|
27 |
tokenizer = AutoTokenizer.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
|
28 |
model = AutoModelForCausalLM.from_pretrained(
|
29 |
"wuhp/myr1",
|
30 |
subfolder="myr1",
|
31 |
config=config,
|
32 |
+
torch_dtype=torch.float16,
|
33 |
device_map="auto",
|
34 |
trust_remote_code=True
|
35 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
# Tokenize
|
38 |
+
def tokenize(ex):
|
39 |
+
return tokenizer(ex["text"], truncation=True, max_length=512)
|
40 |
+
ds_small = ds_small.map(tokenize, batched=True)
|
41 |
+
|
42 |
+
ds_small.set_format("torch")
|
43 |
+
collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)
|
44 |
|
45 |
+
# Trainer
|
46 |
+
args = TrainingArguments(
|
47 |
+
output_dir="finetuned_model",
|
48 |
+
num_train_epochs=1,
|
49 |
+
per_device_train_batch_size=1,
|
50 |
+
logging_steps=5,
|
51 |
+
fp16=True,
|
52 |
+
save_strategy="no",
|
53 |
)
|
54 |
+
trainer = Trainer(
|
55 |
+
model=model,
|
56 |
+
args=args,
|
57 |
+
train_dataset=ds_small,
|
58 |
+
data_collator=collator,
|
59 |
+
)
|
60 |
+
trainer.train()
|
61 |
|
62 |
+
# Save
|
63 |
+
trainer.save_model("finetuned_model")
|
64 |
+
tokenizer.save_pretrained("finetuned_model")
|
65 |
+
return "Finetuning done!"
|
|
|
|
|
66 |
|
67 |
+
# Then define a Gradio UI that calls run_finetuning
|
68 |
+
with gr.Blocks() as demo:
|
69 |
+
btn = gr.Button("Run Finetuning (10 min max!)")
|
70 |
+
status = gr.Textbox(label="Status")
|
71 |
+
btn.click(fn=run_finetuning, inputs=None, outputs=status)
|
72 |
|
73 |
demo.launch()
|