Update app.py
Browse files
app.py
CHANGED
@@ -22,6 +22,7 @@ from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_tr
|
|
22 |
##############################################################################
|
23 |
|
24 |
TEXT_PIPELINE = None
|
|
|
25 |
NUM_EXAMPLES = 50 # We'll train on 50 lines of WikiText-2 for demonstration
|
26 |
|
27 |
@spaces.GPU(duration=600) # up to 10 min
|
@@ -70,7 +71,6 @@ def finetune_small_subset():
|
|
70 |
base_model = prepare_model_for_kbit_training(base_model)
|
71 |
|
72 |
# --- 3) Create LoRA config & wrap the base model in LoRA ---
|
73 |
-
# Adjust target_modules if your model uses different param names than "q_proj"/"v_proj".
|
74 |
lora_config = LoraConfig(
|
75 |
r=16,
|
76 |
lora_alpha=32,
|
@@ -139,7 +139,6 @@ def finetune_small_subset():
|
|
139 |
|
140 |
return "Finetuning complete (QLoRA + LoRA). Model loaded for inference."
|
141 |
|
142 |
-
|
143 |
def ensure_pipeline():
|
144 |
"""
|
145 |
If we haven't finetuned yet (TEXT_PIPELINE is None),
|
@@ -166,6 +165,37 @@ def ensure_pipeline():
|
|
166 |
TEXT_PIPELINE = pipeline("text-generation", model=base_model, tokenizer=tokenizer)
|
167 |
return TEXT_PIPELINE
|
168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
@spaces.GPU(duration=120) # up to 2 min for text generation
|
170 |
def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
|
171 |
"""
|
@@ -182,15 +212,49 @@ def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
|
|
182 |
)
|
183 |
return out[0]["generated_text"]
|
184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
# Build Gradio UI
|
186 |
with gr.Blocks() as demo:
|
187 |
gr.Markdown("## ZeroGPU QLoRA Example for wuhp/myr1")
|
|
|
188 |
|
189 |
finetune_btn = gr.Button("Finetune 4-bit (QLoRA) on 50 lines of WikiText-2 (up to 10 min)")
|
190 |
status_box = gr.Textbox(label="Finetune Status")
|
191 |
finetune_btn.click(fn=finetune_small_subset, outputs=status_box)
|
192 |
|
193 |
-
gr.Markdown("
|
194 |
|
195 |
prompt_in = gr.Textbox(lines=3, label="Prompt")
|
196 |
temperature = gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature")
|
@@ -198,8 +262,8 @@ with gr.Blocks() as demo:
|
|
198 |
min_tokens = gr.Slider(260, 5000, value=260, step=10, label="Min New Tokens")
|
199 |
max_tokens = gr.Slider(260, 5000, value=500, step=50, label="Max New Tokens")
|
200 |
|
201 |
-
output_box = gr.Textbox(label="
|
202 |
-
gen_btn = gr.Button("Generate")
|
203 |
|
204 |
gen_btn.click(
|
205 |
fn=predict,
|
@@ -207,4 +271,16 @@ with gr.Blocks() as demo:
|
|
207 |
outputs=output_box
|
208 |
)
|
209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
demo.launch()
|
|
|
22 |
##############################################################################
|
23 |
|
24 |
TEXT_PIPELINE = None
|
25 |
+
COMPARISON_PIPELINE = None # We'll keep a separate pipeline for the DeepSeek model
|
26 |
NUM_EXAMPLES = 50 # We'll train on 50 lines of WikiText-2 for demonstration
|
27 |
|
28 |
@spaces.GPU(duration=600) # up to 10 min
|
|
|
71 |
base_model = prepare_model_for_kbit_training(base_model)
|
72 |
|
73 |
# --- 3) Create LoRA config & wrap the base model in LoRA ---
|
|
|
74 |
lora_config = LoraConfig(
|
75 |
r=16,
|
76 |
lora_alpha=32,
|
|
|
139 |
|
140 |
return "Finetuning complete (QLoRA + LoRA). Model loaded for inference."
|
141 |
|
|
|
142 |
def ensure_pipeline():
|
143 |
"""
|
144 |
If we haven't finetuned yet (TEXT_PIPELINE is None),
|
|
|
165 |
TEXT_PIPELINE = pipeline("text-generation", model=base_model, tokenizer=tokenizer)
|
166 |
return TEXT_PIPELINE
|
167 |
|
168 |
+
def ensure_comparison_pipeline():
|
169 |
+
"""
|
170 |
+
Load the DeepSeek model pipeline if not already loaded.
|
171 |
+
Adjust config if you'd like to load in 4-bit, or just do standard fp16/bfloat16.
|
172 |
+
"""
|
173 |
+
global COMPARISON_PIPELINE
|
174 |
+
if COMPARISON_PIPELINE is None:
|
175 |
+
# Example: standard load (no QLoRA).
|
176 |
+
# If you want 4-bit, you can set up BitsAndBytesConfig here similarly.
|
177 |
+
config = AutoConfig.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Llama-8B")
|
178 |
+
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Llama-8B")
|
179 |
+
|
180 |
+
# If you want to use device_map="auto" for GPU usage:
|
181 |
+
# In many cases you might want to do:
|
182 |
+
# device_map="auto" or device_map=0 for single-GPU.
|
183 |
+
# For demonstration, let's keep it simple.
|
184 |
+
# If your environment supports accelerate, you can do device_map="auto".
|
185 |
+
model = AutoModelForCausalLM.from_pretrained(
|
186 |
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
|
187 |
+
config=config,
|
188 |
+
device_map="auto"
|
189 |
+
)
|
190 |
+
|
191 |
+
COMPARISON_PIPELINE = pipeline(
|
192 |
+
"text-generation",
|
193 |
+
model=model,
|
194 |
+
tokenizer=tokenizer
|
195 |
+
)
|
196 |
+
|
197 |
+
return COMPARISON_PIPELINE
|
198 |
+
|
199 |
@spaces.GPU(duration=120) # up to 2 min for text generation
|
200 |
def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
|
201 |
"""
|
|
|
212 |
)
|
213 |
return out[0]["generated_text"]
|
214 |
|
215 |
+
@spaces.GPU(duration=120)
|
216 |
+
def compare_models(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
|
217 |
+
"""
|
218 |
+
Generates text side-by-side from the local myr1 pipeline (fine-tuned or base)
|
219 |
+
AND from the DeepSeek model.
|
220 |
+
Returns two strings.
|
221 |
+
"""
|
222 |
+
# Ensure both pipelines are loaded:
|
223 |
+
local_pipe = ensure_pipeline()
|
224 |
+
comp_pipe = ensure_comparison_pipeline()
|
225 |
+
|
226 |
+
local_out = local_pipe(
|
227 |
+
prompt,
|
228 |
+
temperature=float(temperature),
|
229 |
+
top_p=float(top_p),
|
230 |
+
min_new_tokens=int(min_new_tokens),
|
231 |
+
max_new_tokens=int(max_new_tokens),
|
232 |
+
do_sample=True
|
233 |
+
)
|
234 |
+
local_text = local_out[0]["generated_text"]
|
235 |
+
|
236 |
+
comp_out = comp_pipe(
|
237 |
+
prompt,
|
238 |
+
temperature=float(temperature),
|
239 |
+
top_p=float(top_p),
|
240 |
+
min_new_tokens=int(min_new_tokens),
|
241 |
+
max_new_tokens=int(max_new_tokens),
|
242 |
+
do_sample=True
|
243 |
+
)
|
244 |
+
comp_text = comp_out[0]["generated_text"]
|
245 |
+
|
246 |
+
return local_text, comp_text
|
247 |
+
|
248 |
# Build Gradio UI
|
249 |
with gr.Blocks() as demo:
|
250 |
gr.Markdown("## ZeroGPU QLoRA Example for wuhp/myr1")
|
251 |
+
gr.Markdown("Finetune or skip to use the base model. Then compare results with the DeepSeek model.")
|
252 |
|
253 |
finetune_btn = gr.Button("Finetune 4-bit (QLoRA) on 50 lines of WikiText-2 (up to 10 min)")
|
254 |
status_box = gr.Textbox(label="Finetune Status")
|
255 |
finetune_btn.click(fn=finetune_small_subset, outputs=status_box)
|
256 |
|
257 |
+
gr.Markdown("### Generate with myr1 (fine-tuned if done above, else base)")
|
258 |
|
259 |
prompt_in = gr.Textbox(lines=3, label="Prompt")
|
260 |
temperature = gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature")
|
|
|
262 |
min_tokens = gr.Slider(260, 5000, value=260, step=10, label="Min New Tokens")
|
263 |
max_tokens = gr.Slider(260, 5000, value=500, step=50, label="Max New Tokens")
|
264 |
|
265 |
+
output_box = gr.Textbox(label="myr1 Model Output", lines=12)
|
266 |
+
gen_btn = gr.Button("Generate with myr1")
|
267 |
|
268 |
gen_btn.click(
|
269 |
fn=predict,
|
|
|
271 |
outputs=output_box
|
272 |
)
|
273 |
|
274 |
+
gr.Markdown("### Compare myr1 vs DeepSeek-R1-Distill-Llama-8B side-by-side")
|
275 |
+
|
276 |
+
compare_btn = gr.Button("Compare (Side-by-side)")
|
277 |
+
out_local = gr.Textbox(label="myr1 Output", lines=10)
|
278 |
+
out_deepseek = gr.Textbox(label="DeepSeek Output", lines=10)
|
279 |
+
|
280 |
+
compare_btn.click(
|
281 |
+
fn=compare_models,
|
282 |
+
inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens],
|
283 |
+
outputs=[out_local, out_deepseek]
|
284 |
+
)
|
285 |
+
|
286 |
demo.launch()
|