Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,21 +6,24 @@ from PIL import Image
|
|
6 |
import shutil
|
7 |
from ultralytics import YOLO
|
8 |
import requests
|
|
|
|
|
9 |
|
10 |
# Constants
|
11 |
MODELS_DIR = "models"
|
12 |
MODELS_INFO_FILE = "models_info.json"
|
13 |
TEMP_DIR = "temp"
|
14 |
OUTPUT_DIR = "outputs"
|
|
|
15 |
|
16 |
def download_file(url, dest_path):
|
17 |
"""
|
18 |
Download a file from a URL to the destination path.
|
19 |
-
|
20 |
Args:
|
21 |
url (str): The URL to download from.
|
22 |
dest_path (str): The local path to save the file.
|
23 |
-
|
24 |
Returns:
|
25 |
bool: True if download succeeded, False otherwise.
|
26 |
"""
|
@@ -40,17 +43,17 @@ def load_models(models_dir=MODELS_DIR, info_file=MODELS_INFO_FILE):
|
|
40 |
"""
|
41 |
Load YOLO models and their information from the specified directory and JSON file.
|
42 |
Downloads models if they are not already present.
|
43 |
-
|
44 |
Args:
|
45 |
models_dir (str): Path to the models directory.
|
46 |
info_file (str): Path to the JSON file containing model info.
|
47 |
-
|
48 |
Returns:
|
49 |
dict: A dictionary of models and their associated information.
|
50 |
"""
|
51 |
with open(info_file, 'r') as f:
|
52 |
models_info = json.load(f)
|
53 |
-
|
54 |
models = {}
|
55 |
for model_info in models_info:
|
56 |
model_name = model_info['model_name']
|
@@ -59,7 +62,7 @@ def load_models(models_dir=MODELS_DIR, info_file=MODELS_INFO_FILE):
|
|
59 |
os.makedirs(model_dir, exist_ok=True)
|
60 |
model_path = os.path.join(model_dir, f"{model_name}.pt") # e.g., models/human/human.pt
|
61 |
download_url = model_info['download_url']
|
62 |
-
|
63 |
# Check if the model file exists
|
64 |
if not os.path.isfile(model_path):
|
65 |
print(f"Model '{display_name}' not found locally. Downloading from {download_url}...")
|
@@ -67,7 +70,7 @@ def load_models(models_dir=MODELS_DIR, info_file=MODELS_INFO_FILE):
|
|
67 |
if not success:
|
68 |
print(f"Skipping model '{display_name}' due to download failure.")
|
69 |
continue # Skip loading this model
|
70 |
-
|
71 |
try:
|
72 |
# Load the YOLO model
|
73 |
model = YOLO(model_path)
|
@@ -79,16 +82,16 @@ def load_models(models_dir=MODELS_DIR, info_file=MODELS_INFO_FILE):
|
|
79 |
print(f"Loaded model '{display_name}' from '{model_path}'.")
|
80 |
except Exception as e:
|
81 |
print(f"Error loading model '{display_name}': {e}")
|
82 |
-
|
83 |
return models
|
84 |
|
85 |
def get_model_info(model_info):
|
86 |
"""
|
87 |
Retrieve formatted model information for display.
|
88 |
-
|
89 |
Args:
|
90 |
model_info (dict): The model's information dictionary.
|
91 |
-
|
92 |
Returns:
|
93 |
str: A formatted string containing model details.
|
94 |
"""
|
@@ -96,11 +99,11 @@ def get_model_info(model_info):
|
|
96 |
class_ids = info.get('class_ids', {})
|
97 |
class_image_counts = info.get('class_image_counts', {})
|
98 |
datasets_used = info.get('datasets_used', [])
|
99 |
-
|
100 |
class_ids_formatted = "\n".join([f"{cid}: {cname}" for cid, cname in class_ids.items()])
|
101 |
class_image_counts_formatted = "\n".join([f"{cname}: {count}" for cname, count in class_image_counts.items()])
|
102 |
datasets_used_formatted = "\n".join([f"- {dataset}" for dataset in datasets_used])
|
103 |
-
|
104 |
info_text = (
|
105 |
f"**{info.get('display_name', 'Model Name')}**\n\n"
|
106 |
f"**Architecture:** {info.get('architecture', 'N/A')}\n\n"
|
@@ -117,66 +120,41 @@ def get_model_info(model_info):
|
|
117 |
)
|
118 |
return info_text
|
119 |
|
120 |
-
def
|
121 |
"""
|
122 |
-
|
123 |
-
|
124 |
Args:
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
models (dict): The dictionary containing models and their info.
|
129 |
-
|
130 |
Returns:
|
131 |
-
|
132 |
"""
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
# Save the uploaded image to a temporary path
|
143 |
-
input_image_path = os.path.join(TEMP_DIR, f"{model_name}_input_image.jpg")
|
144 |
-
image.save(input_image_path)
|
145 |
-
|
146 |
-
# Perform prediction with user-specified confidence
|
147 |
-
results = model(input_image_path, save=True, save_txt=False, conf=confidence)
|
148 |
-
|
149 |
-
# Determine the output path
|
150 |
-
# Ultralytics YOLO saves the results in 'runs/detect/predict' by default
|
151 |
-
latest_run = sorted(Path("runs/detect").glob("predict*"), key=os.path.getmtime)[-1]
|
152 |
-
output_image_path = os.path.join(latest_run, Path(input_image_path).name)
|
153 |
-
if not os.path.isfile(output_image_path):
|
154 |
-
# Alternative method to get the output path
|
155 |
-
output_image_path = results[0].save()[0]
|
156 |
-
|
157 |
-
# Copy the output image to OUTPUT_DIR
|
158 |
-
final_output_path = os.path.join(OUTPUT_DIR, f"{model_name}_output_image.jpg")
|
159 |
-
shutil.copy(output_image_path, final_output_path)
|
160 |
-
|
161 |
-
# Open the output image
|
162 |
-
output_image = Image.open(final_output_path)
|
163 |
-
|
164 |
-
return "β
Prediction completed successfully.", output_image, final_output_path
|
165 |
-
except Exception as e:
|
166 |
-
return f"β Error during prediction: {str(e)}", None, None
|
167 |
|
168 |
-
|
|
|
|
|
|
|
169 |
"""
|
170 |
-
Perform prediction on
|
171 |
-
|
172 |
Args:
|
173 |
model_name (str): The name of the selected model.
|
174 |
-
|
175 |
confidence (float): The confidence threshold for detections.
|
176 |
models (dict): The dictionary containing models and their info.
|
177 |
-
|
178 |
Returns:
|
179 |
-
tuple: A status message,
|
180 |
"""
|
181 |
model_entry = models.get(model_name, {})
|
182 |
model = model_entry.get('model', None)
|
@@ -186,28 +164,44 @@ def predict_video(model_name, video, confidence, models):
|
|
186 |
# Ensure temporary and output directories exist
|
187 |
os.makedirs(TEMP_DIR, exist_ok=True)
|
188 |
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
except Exception as e:
|
212 |
return f"β Error during prediction: {str(e)}", None, None
|
213 |
|
@@ -217,16 +211,16 @@ def main():
|
|
217 |
if not models:
|
218 |
print("No models loaded. Please check your models_info.json and model URLs.")
|
219 |
return
|
220 |
-
|
221 |
# Initialize Gradio Blocks interface
|
222 |
with gr.Blocks() as demo:
|
223 |
gr.Markdown("# π§ͺ YOLOv11 Model Tester")
|
224 |
gr.Markdown(
|
225 |
"""
|
226 |
-
Upload
|
227 |
"""
|
228 |
)
|
229 |
-
|
230 |
# Model selection and info
|
231 |
with gr.Row():
|
232 |
model_dropdown = gr.Dropdown(
|
@@ -235,10 +229,10 @@ def main():
|
|
235 |
value=None
|
236 |
)
|
237 |
model_info = gr.Markdown("**Model Information will appear here.**")
|
238 |
-
|
239 |
# Mapping from display_name to model_name
|
240 |
display_to_name = {models[m]['display_name']: m for m in models}
|
241 |
-
|
242 |
# Update model_info when a model is selected
|
243 |
def update_model_info(selected_display_name):
|
244 |
if not selected_display_name:
|
@@ -248,13 +242,13 @@ def main():
|
|
248 |
return "Model information not available."
|
249 |
model_entry = models[model_name]['info']
|
250 |
return get_model_info(model_entry)
|
251 |
-
|
252 |
model_dropdown.change(
|
253 |
fn=update_model_info,
|
254 |
inputs=model_dropdown,
|
255 |
outputs=model_info
|
256 |
)
|
257 |
-
|
258 |
# Confidence Threshold Slider
|
259 |
with gr.Row():
|
260 |
confidence_slider = gr.Slider(
|
@@ -265,68 +259,42 @@ def main():
|
|
265 |
label="Confidence Threshold",
|
266 |
info="Adjust the minimum confidence required for detections to be displayed."
|
267 |
)
|
268 |
-
|
269 |
-
#
|
270 |
-
with gr.
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
type='pil',
|
276 |
-
label="Upload Image for Prediction"
|
277 |
-
# Removed 'tool' parameter
|
278 |
-
)
|
279 |
-
image_predict_btn = gr.Button("π Predict on Image")
|
280 |
-
image_status = gr.Markdown("**Status will appear here.**")
|
281 |
-
image_output = gr.Image(label="Predicted Image")
|
282 |
-
image_download_btn = gr.File(label="β¬οΈ Download Predicted Image")
|
283 |
-
|
284 |
-
# Define the image prediction function
|
285 |
-
def process_image(selected_display_name, image, confidence):
|
286 |
-
if not selected_display_name:
|
287 |
-
return "β Please select a model.", None, None
|
288 |
-
model_name = display_to_name.get(selected_display_name)
|
289 |
-
return predict_image(model_name, image, confidence, models)
|
290 |
-
|
291 |
-
# Connect the predict button
|
292 |
-
image_predict_btn.click(
|
293 |
-
fn=process_image,
|
294 |
-
inputs=[model_dropdown, image_input, confidence_slider],
|
295 |
-
outputs=[image_status, image_output, image_download_btn]
|
296 |
-
)
|
297 |
-
|
298 |
-
# Video Prediction Tab
|
299 |
-
with gr.Tab("π₯ Video"):
|
300 |
-
with gr.Column():
|
301 |
-
video_input = gr.Video(
|
302 |
-
label="Upload Video for Prediction"
|
303 |
-
)
|
304 |
-
video_predict_btn = gr.Button("π Predict on Video")
|
305 |
-
video_status = gr.Markdown("**Status will appear here.**")
|
306 |
-
video_output = gr.Video(label="Predicted Video")
|
307 |
-
video_download_btn = gr.File(label="β¬οΈ Download Predicted Video")
|
308 |
-
|
309 |
-
# Define the video prediction function
|
310 |
-
def process_video(selected_display_name, video, confidence):
|
311 |
-
if not selected_display_name:
|
312 |
-
return "β Please select a model.", None, None
|
313 |
-
model_name = display_to_name.get(selected_display_name)
|
314 |
-
return predict_video(model_name, video, confidence, models)
|
315 |
-
|
316 |
-
# Connect the predict button
|
317 |
-
video_predict_btn.click(
|
318 |
-
fn=process_video,
|
319 |
-
inputs=[model_dropdown, video_input, confidence_slider],
|
320 |
-
outputs=[video_status, video_output, video_download_btn]
|
321 |
)
|
322 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
gr.Markdown(
|
324 |
"""
|
325 |
---
|
326 |
**Note:** Models are downloaded from GitHub upon first use. Ensure that you have a stable internet connection and sufficient storage space.
|
327 |
"""
|
328 |
)
|
329 |
-
|
330 |
# Launch the Gradio app
|
331 |
demo.launch()
|
332 |
|
|
|
6 |
import shutil
|
7 |
from ultralytics import YOLO
|
8 |
import requests
|
9 |
+
import zipfile
|
10 |
+
import uuid
|
11 |
|
12 |
# Constants
|
13 |
MODELS_DIR = "models"
|
14 |
MODELS_INFO_FILE = "models_info.json"
|
15 |
TEMP_DIR = "temp"
|
16 |
OUTPUT_DIR = "outputs"
|
17 |
+
ZIP_DIR = "zips"
|
18 |
|
19 |
def download_file(url, dest_path):
|
20 |
"""
|
21 |
Download a file from a URL to the destination path.
|
22 |
+
|
23 |
Args:
|
24 |
url (str): The URL to download from.
|
25 |
dest_path (str): The local path to save the file.
|
26 |
+
|
27 |
Returns:
|
28 |
bool: True if download succeeded, False otherwise.
|
29 |
"""
|
|
|
43 |
"""
|
44 |
Load YOLO models and their information from the specified directory and JSON file.
|
45 |
Downloads models if they are not already present.
|
46 |
+
|
47 |
Args:
|
48 |
models_dir (str): Path to the models directory.
|
49 |
info_file (str): Path to the JSON file containing model info.
|
50 |
+
|
51 |
Returns:
|
52 |
dict: A dictionary of models and their associated information.
|
53 |
"""
|
54 |
with open(info_file, 'r') as f:
|
55 |
models_info = json.load(f)
|
56 |
+
|
57 |
models = {}
|
58 |
for model_info in models_info:
|
59 |
model_name = model_info['model_name']
|
|
|
62 |
os.makedirs(model_dir, exist_ok=True)
|
63 |
model_path = os.path.join(model_dir, f"{model_name}.pt") # e.g., models/human/human.pt
|
64 |
download_url = model_info['download_url']
|
65 |
+
|
66 |
# Check if the model file exists
|
67 |
if not os.path.isfile(model_path):
|
68 |
print(f"Model '{display_name}' not found locally. Downloading from {download_url}...")
|
|
|
70 |
if not success:
|
71 |
print(f"Skipping model '{display_name}' due to download failure.")
|
72 |
continue # Skip loading this model
|
73 |
+
|
74 |
try:
|
75 |
# Load the YOLO model
|
76 |
model = YOLO(model_path)
|
|
|
82 |
print(f"Loaded model '{display_name}' from '{model_path}'.")
|
83 |
except Exception as e:
|
84 |
print(f"Error loading model '{display_name}': {e}")
|
85 |
+
|
86 |
return models
|
87 |
|
88 |
def get_model_info(model_info):
|
89 |
"""
|
90 |
Retrieve formatted model information for display.
|
91 |
+
|
92 |
Args:
|
93 |
model_info (dict): The model's information dictionary.
|
94 |
+
|
95 |
Returns:
|
96 |
str: A formatted string containing model details.
|
97 |
"""
|
|
|
99 |
class_ids = info.get('class_ids', {})
|
100 |
class_image_counts = info.get('class_image_counts', {})
|
101 |
datasets_used = info.get('datasets_used', [])
|
102 |
+
|
103 |
class_ids_formatted = "\n".join([f"{cid}: {cname}" for cid, cname in class_ids.items()])
|
104 |
class_image_counts_formatted = "\n".join([f"{cname}: {count}" for cname, count in class_image_counts.items()])
|
105 |
datasets_used_formatted = "\n".join([f"- {dataset}" for dataset in datasets_used])
|
106 |
+
|
107 |
info_text = (
|
108 |
f"**{info.get('display_name', 'Model Name')}**\n\n"
|
109 |
f"**Architecture:** {info.get('architecture', 'N/A')}\n\n"
|
|
|
120 |
)
|
121 |
return info_text
|
122 |
|
123 |
+
def zip_processed_images(processed_image_paths, model_name):
|
124 |
"""
|
125 |
+
Create a ZIP file containing all processed images.
|
126 |
+
|
127 |
Args:
|
128 |
+
processed_image_paths (list): List of file paths to processed images.
|
129 |
+
model_name (str): Name of the model used for processing.
|
130 |
+
|
|
|
|
|
131 |
Returns:
|
132 |
+
str: Path to the created ZIP file.
|
133 |
"""
|
134 |
+
os.makedirs(ZIP_DIR, exist_ok=True)
|
135 |
+
zip_filename = f"{model_name}_processed_images_{uuid.uuid4().hex}.zip"
|
136 |
+
zip_path = os.path.join(ZIP_DIR, zip_filename)
|
137 |
+
|
138 |
+
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
139 |
+
for img_path in processed_image_paths:
|
140 |
+
arcname = os.path.basename(img_path)
|
141 |
+
zipf.write(img_path, arcname)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
+
print(f"Created ZIP file at {zip_path}.")
|
144 |
+
return zip_path
|
145 |
+
|
146 |
+
def predict_image(model_name, images, confidence, models):
|
147 |
"""
|
148 |
+
Perform prediction on uploaded images using the selected YOLO model.
|
149 |
+
|
150 |
Args:
|
151 |
model_name (str): The name of the selected model.
|
152 |
+
images (list): List of uploaded PIL.Image.Image objects.
|
153 |
confidence (float): The confidence threshold for detections.
|
154 |
models (dict): The dictionary containing models and their info.
|
155 |
+
|
156 |
Returns:
|
157 |
+
tuple: A status message, list of processed images, and a ZIP file for download.
|
158 |
"""
|
159 |
model_entry = models.get(model_name, {})
|
160 |
model = model_entry.get('model', None)
|
|
|
164 |
# Ensure temporary and output directories exist
|
165 |
os.makedirs(TEMP_DIR, exist_ok=True)
|
166 |
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
167 |
+
|
168 |
+
processed_image_paths = []
|
169 |
+
processed_images = []
|
170 |
+
|
171 |
+
for idx, image in enumerate(images):
|
172 |
+
# Generate unique filenames to avoid conflicts
|
173 |
+
unique_id = uuid.uuid4().hex
|
174 |
+
input_image_path = os.path.join(TEMP_DIR, f"{model_name}_input_image_{unique_id}.jpg")
|
175 |
+
output_image_path = os.path.join(OUTPUT_DIR, f"{model_name}_output_image_{unique_id}.jpg")
|
176 |
+
|
177 |
+
# Save the uploaded image to a temporary path
|
178 |
+
image.save(input_image_path)
|
179 |
+
|
180 |
+
# Perform prediction with user-specified confidence
|
181 |
+
results = model(input_image_path, save=True, save_txt=False, conf=confidence)
|
182 |
+
|
183 |
+
# Determine the output path
|
184 |
+
# Ultralytics YOLO saves the results in 'runs/detect/predict' by default
|
185 |
+
latest_run = sorted(Path("runs/detect").glob("predict*"), key=os.path.getmtime)[-1]
|
186 |
+
detected_image_path = os.path.join(latest_run, Path(input_image_path).name)
|
187 |
+
|
188 |
+
if not os.path.isfile(detected_image_path):
|
189 |
+
# Alternative method to get the output path
|
190 |
+
detected_image_path = results[0].save()[0]
|
191 |
+
|
192 |
+
# Copy the output image to OUTPUT_DIR with a unique name
|
193 |
+
shutil.copy(detected_image_path, output_image_path)
|
194 |
+
processed_image_paths.append(output_image_path)
|
195 |
+
|
196 |
+
# Open the processed image for display
|
197 |
+
processed_image = Image.open(output_image_path)
|
198 |
+
processed_images.append(processed_image)
|
199 |
+
|
200 |
+
# Create a ZIP file containing all processed images
|
201 |
+
zip_path = zip_processed_images(processed_image_paths, model_name)
|
202 |
+
|
203 |
+
return "β
Prediction completed successfully.", processed_images, zip_path
|
204 |
+
|
205 |
except Exception as e:
|
206 |
return f"β Error during prediction: {str(e)}", None, None
|
207 |
|
|
|
211 |
if not models:
|
212 |
print("No models loaded. Please check your models_info.json and model URLs.")
|
213 |
return
|
214 |
+
|
215 |
# Initialize Gradio Blocks interface
|
216 |
with gr.Blocks() as demo:
|
217 |
gr.Markdown("# π§ͺ YOLOv11 Model Tester")
|
218 |
gr.Markdown(
|
219 |
"""
|
220 |
+
Upload one or multiple images to test different YOLOv11 models. Select a model from the dropdown to see its details.
|
221 |
"""
|
222 |
)
|
223 |
+
|
224 |
# Model selection and info
|
225 |
with gr.Row():
|
226 |
model_dropdown = gr.Dropdown(
|
|
|
229 |
value=None
|
230 |
)
|
231 |
model_info = gr.Markdown("**Model Information will appear here.**")
|
232 |
+
|
233 |
# Mapping from display_name to model_name
|
234 |
display_to_name = {models[m]['display_name']: m for m in models}
|
235 |
+
|
236 |
# Update model_info when a model is selected
|
237 |
def update_model_info(selected_display_name):
|
238 |
if not selected_display_name:
|
|
|
242 |
return "Model information not available."
|
243 |
model_entry = models[model_name]['info']
|
244 |
return get_model_info(model_entry)
|
245 |
+
|
246 |
model_dropdown.change(
|
247 |
fn=update_model_info,
|
248 |
inputs=model_dropdown,
|
249 |
outputs=model_info
|
250 |
)
|
251 |
+
|
252 |
# Confidence Threshold Slider
|
253 |
with gr.Row():
|
254 |
confidence_slider = gr.Slider(
|
|
|
259 |
label="Confidence Threshold",
|
260 |
info="Adjust the minimum confidence required for detections to be displayed."
|
261 |
)
|
262 |
+
|
263 |
+
# Image Prediction Tab (now supporting multiple images)
|
264 |
+
with gr.Tab("πΌοΈ Image"):
|
265 |
+
with gr.Column():
|
266 |
+
image_input = gr.Images(
|
267 |
+
label="Upload Images for Prediction",
|
268 |
+
type='pil'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
)
|
270 |
+
image_predict_btn = gr.Button("π Predict on Images")
|
271 |
+
image_status = gr.Markdown("**Status will appear here.**")
|
272 |
+
image_gallery = gr.Gallery(label="Predicted Images").style(grid=[2], height="auto")
|
273 |
+
image_download_btn = gr.File(label="β¬οΈ Download All Processed Images (ZIP)")
|
274 |
+
|
275 |
+
# Define the image prediction function
|
276 |
+
def process_image(selected_display_name, images, confidence):
|
277 |
+
if not selected_display_name:
|
278 |
+
return "β Please select a model.", None, None
|
279 |
+
if not images:
|
280 |
+
return "β Please upload at least one image.", None, None
|
281 |
+
model_name = display_to_name.get(selected_display_name)
|
282 |
+
return predict_image(model_name, images, confidence, models)
|
283 |
+
|
284 |
+
# Connect the predict button
|
285 |
+
image_predict_btn.click(
|
286 |
+
fn=process_image,
|
287 |
+
inputs=[model_dropdown, image_input, confidence_slider],
|
288 |
+
outputs=[image_status, image_gallery, image_download_btn]
|
289 |
+
)
|
290 |
+
|
291 |
gr.Markdown(
|
292 |
"""
|
293 |
---
|
294 |
**Note:** Models are downloaded from GitHub upon first use. Ensure that you have a stable internet connection and sufficient storage space.
|
295 |
"""
|
296 |
)
|
297 |
+
|
298 |
# Launch the Gradio app
|
299 |
demo.launch()
|
300 |
|