from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union from einops import rearrange import torch import torch.nn as nn from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.loaders import UNet2DConditionLoadersMixin from diffusers.utils import BaseOutput, logging # from diffusers.models.attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor from models_diffusers.attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor from diffusers.models.embeddings import TimestepEmbedding, Timesteps from diffusers.models.modeling_utils import ModelMixin # from diffusers.models.unet_3d_blocks import UNetMidBlockSpatioTemporal, get_down_block, get_up_block from models_diffusers.unet_3d_blocks import UNetMidBlockSpatioTemporal, get_down_block, get_up_block import inspect import itertools import os import re from collections import OrderedDict from functools import partial from typing import Any, Callable, List, Optional, Tuple, Union from diffusers import __version__ from diffusers.utils import ( CONFIG_NAME, DIFFUSERS_CACHE, FLAX_WEIGHTS_NAME, HF_HUB_OFFLINE, MIN_PEFT_VERSION, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, _add_variant, _get_model_file, check_peft_version, deprecate, is_accelerate_available, is_torch_version, logging, ) from diffusers.utils.hub_utils import PushToHubMixin from diffusers.models.modeling_utils import load_model_dict_into_meta, load_state_dict if is_torch_version(">=", "1.9.0"): _LOW_CPU_MEM_USAGE_DEFAULT = True else: _LOW_CPU_MEM_USAGE_DEFAULT = False if is_accelerate_available(): import accelerate from accelerate.utils import set_module_tensor_to_device from accelerate.utils.versions import is_torch_version logger = logging.get_logger(__name__) # pylint: disable=invalid-name @dataclass class UNetSpatioTemporalConditionOutput(BaseOutput): """ The output of [`UNetSpatioTemporalConditionModel`]. Args: sample (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`): The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model. """ sample: torch.FloatTensor = None intermediate_features: Optional[Tuple[torch.FloatTensor]] = None class UNetSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): r""" A conditional Spatio-Temporal UNet model that takes a noisy video frames, conditional state, and a timestep and returns a sample shaped output. This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented for all models (such as downloading or saving). Parameters: sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): Height and width of input/output sample. in_channels (`int`, *optional*, defaults to 8): Number of channels in the input sample. out_channels (`int`, *optional*, defaults to 4): Number of channels in the output. down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "DownBlockSpatioTemporal")`): The tuple of downsample blocks to use. up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal")`): The tuple of upsample blocks to use. block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): The tuple of output channels for each block. addition_time_embed_dim: (`int`, defaults to 256): Dimension to to encode the additional time ids. projection_class_embeddings_input_dim (`int`, defaults to 768): The dimension of the projection of encoded `added_time_ids`. layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280): The dimension of the cross attention features. transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1): The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for [`~models.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal`], [`~models.unet_3d_blocks.CrossAttnUpBlockSpatioTemporal`], [`~models.unet_3d_blocks.UNetMidBlockSpatioTemporal`]. num_attention_heads (`int`, `Tuple[int]`, defaults to `(5, 10, 10, 20)`): The number of attention heads. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, sample_size: Optional[int] = None, in_channels: int = 8, out_channels: int = 4, down_block_types: Tuple[str] = ( "CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "DownBlockSpatioTemporal", ), up_block_types: Tuple[str] = ( "UpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", ), block_out_channels: Tuple[int] = (320, 640, 1280, 1280), addition_time_embed_dim: int = 256, projection_class_embeddings_input_dim: int = 768, layers_per_block: Union[int, Tuple[int]] = 2, cross_attention_dim: Union[int, Tuple[int]] = 1024, transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, num_attention_heads: Union[int, Tuple[int]] = (5, 10, 10, 20), num_frames: int = 25, ): super().__init__() self.sample_size = sample_size # Check inputs if len(down_block_types) != len(up_block_types): raise ValueError( f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." ) if len(block_out_channels) != len(down_block_types): raise ValueError( f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." ) if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): raise ValueError( f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." ) if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): raise ValueError( f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." ) if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): raise ValueError( f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." ) self.mask_token = nn.Parameter(torch.randn(1, 1, 4, 1, 1)) # input self.conv_in = nn.Conv2d( in_channels, block_out_channels[0], kernel_size=3, padding=1, ) # time time_embed_dim = block_out_channels[0] * 4 self.time_proj = Timesteps(block_out_channels[0], True, downscale_freq_shift=0) timestep_input_dim = block_out_channels[0] self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) self.add_time_proj = Timesteps(addition_time_embed_dim, True, downscale_freq_shift=0) self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) self.down_blocks = nn.ModuleList([]) self.up_blocks = nn.ModuleList([]) if isinstance(num_attention_heads, int): num_attention_heads = (num_attention_heads,) * len(down_block_types) if isinstance(cross_attention_dim, int): cross_attention_dim = (cross_attention_dim,) * len(down_block_types) if isinstance(layers_per_block, int): layers_per_block = [layers_per_block] * len(down_block_types) if isinstance(transformer_layers_per_block, int): transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) blocks_time_embed_dim = time_embed_dim # down output_channel = block_out_channels[0] for i, down_block_type in enumerate(down_block_types): input_channel = output_channel output_channel = block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 down_block = get_down_block( down_block_type, num_layers=layers_per_block[i], transformer_layers_per_block=transformer_layers_per_block[i], in_channels=input_channel, out_channels=output_channel, temb_channels=blocks_time_embed_dim, add_downsample=not is_final_block, resnet_eps=1e-5, cross_attention_dim=cross_attention_dim[i], num_attention_heads=num_attention_heads[i], resnet_act_fn="silu", ) self.down_blocks.append(down_block) # mid self.mid_block = UNetMidBlockSpatioTemporal( block_out_channels[-1], temb_channels=blocks_time_embed_dim, transformer_layers_per_block=transformer_layers_per_block[-1], cross_attention_dim=cross_attention_dim[-1], num_attention_heads=num_attention_heads[-1], ) # count how many layers upsample the images self.num_upsamplers = 0 # up reversed_block_out_channels = list(reversed(block_out_channels)) reversed_num_attention_heads = list(reversed(num_attention_heads)) reversed_layers_per_block = list(reversed(layers_per_block)) reversed_cross_attention_dim = list(reversed(cross_attention_dim)) reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) output_channel = reversed_block_out_channels[0] for i, up_block_type in enumerate(up_block_types): is_final_block = i == len(block_out_channels) - 1 prev_output_channel = output_channel output_channel = reversed_block_out_channels[i] input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] # add upsample block for all BUT final layer if not is_final_block: add_upsample = True self.num_upsamplers += 1 else: add_upsample = False up_block = get_up_block( up_block_type, num_layers=reversed_layers_per_block[i] + 1, transformer_layers_per_block=reversed_transformer_layers_per_block[i], in_channels=input_channel, out_channels=output_channel, prev_output_channel=prev_output_channel, temb_channels=blocks_time_embed_dim, add_upsample=add_upsample, resnet_eps=1e-5, resolution_idx=i, cross_attention_dim=reversed_cross_attention_dim[i], num_attention_heads=reversed_num_attention_heads[i], resnet_act_fn="silu", ) self.up_blocks.append(up_block) prev_output_channel = output_channel # out self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-5) self.conv_act = nn.SiLU() self.conv_out = nn.Conv2d( block_out_channels[0], out_channels, kernel_size=3, padding=1, ) @property def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors( name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor], ): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) def set_default_attn_processor(self): """ Disables custom attention processors and sets the default attention implementation. """ if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnProcessor() else: raise ValueError( f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" ) self.set_attn_processor(processor) def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value # Copied from diffusers.models.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: """ Sets the attention processor to use [feed forward chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). Parameters: chunk_size (`int`, *optional*): The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually over each tensor of dim=`dim`. dim (`int`, *optional*, defaults to `0`): The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) or dim=1 (sequence length). """ if dim not in [0, 1]: raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") # By default chunk size is 1 chunk_size = chunk_size or 1 def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): if hasattr(module, "set_chunk_feed_forward"): module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) for child in module.children(): fn_recursive_feed_forward(child, chunk_size, dim) for module in self.children(): fn_recursive_feed_forward(module, chunk_size, dim) def forward( self, sample: torch.FloatTensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, added_time_ids: torch.Tensor, down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, # for t2i-adaptor or controlnet mid_block_additional_residual: Optional[torch.Tensor] = None, # for controlnet return_dict: bool = True, # return_intermediate_features: bool = False, ) -> Union[UNetSpatioTemporalConditionOutput, Tuple]: r""" The [`UNetSpatioTemporalConditionModel`] forward method. Args: sample (`torch.FloatTensor`): The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`. timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. encoder_hidden_states (`torch.FloatTensor`): The encoder hidden states with shape `(batch, sequence_length, cross_attention_dim)`. added_time_ids: (`torch.FloatTensor`): The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal embeddings and added to the time embeddings. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] instead of a plain tuple. Returns: [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] or `tuple`: If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is returned, otherwise a `tuple` is returned where the first element is the sample tensor. """ # 1. time timesteps = timestep if not torch.is_tensor(timesteps): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) is_mps = sample.device.type == "mps" if isinstance(timestep, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) elif len(timesteps.shape) == 0: timesteps = timesteps[None].to(sample.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML batch_size, num_frames = sample.shape[:2] timesteps = timesteps.expand(batch_size) t_emb = self.time_proj(timesteps) # `Timesteps` does not contain any weights and will always return f32 tensors # but time_embedding might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. t_emb = t_emb.to(dtype=sample.dtype) emb = self.time_embedding(t_emb) time_embeds = self.add_time_proj(added_time_ids.flatten()) time_embeds = time_embeds.reshape((batch_size, -1)) time_embeds = time_embeds.to(emb.dtype) aug_emb = self.add_embedding(time_embeds) emb = emb + aug_emb # Flatten the batch and frames dimensions # sample: [batch, frames, channels, height, width] -> [batch * frames, channels, height, width] sample = sample.flatten(0, 1) # Repeat the embeddings num_video_frames times # emb: [batch, channels] -> [batch * frames, channels] emb = emb.repeat_interleave(num_frames, dim=0) # encoder_hidden_states: [batch, 1, channels] -> [batch * frames, 1, channels] encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_frames, dim=0) # 2. pre-process sample = self.conv_in(sample) image_only_indicator = torch.zeros(batch_size, num_frames, dtype=sample.dtype, device=sample.device) is_adapter = is_controlnet = False if (down_block_additional_residuals is not None): if (mid_block_additional_residual is not None): is_controlnet = True else: is_adapter = True down_block_res_samples = (sample,) for block_idx, downsample_block in enumerate(self.down_blocks): if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: # print('has_cross_attention', type(downsample_block)) # models_diffusers.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal additional_residuals = {} if is_adapter and len(down_block_additional_residuals) > 0: additional_residuals['additional_residuals'] = down_block_additional_residuals.pop(0) sample, res_samples = downsample_block( hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states, image_only_indicator=image_only_indicator, **additional_residuals, ) else: # print('no_cross_attention', type(downsample_block)) # models_diffusers.unet_3d_blocks.DownBlockSpatioTemporal sample, res_samples = downsample_block( hidden_states=sample, temb=emb, image_only_indicator=image_only_indicator, ) if is_adapter and len(down_block_additional_residuals) > 0: additional_residuals = down_block_additional_residuals.pop(0) if sample.dim() == 5: additional_residuals = rearrange(additional_residuals, '(b f) c h w -> b c f h w', b=sample.shape[0]) sample = sample + additional_residuals down_block_res_samples += res_samples if is_controlnet: new_down_block_res_samples = () for down_block_res_sample, down_block_additional_residual in zip(down_block_res_samples, down_block_additional_residuals): down_block_res_sample = down_block_res_sample + down_block_additional_residual new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) down_block_res_samples = new_down_block_res_samples # 4. mid sample = self.mid_block( hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states, image_only_indicator=image_only_indicator, ) if is_controlnet: sample = sample + mid_block_additional_residual # if return_intermediate_features: intermediate_features = [] # 5. up for block_idx, upsample_block in enumerate(self.up_blocks): res_samples = down_block_res_samples[-len(upsample_block.resnets) :] down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: sample = upsample_block( hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, encoder_hidden_states=encoder_hidden_states, image_only_indicator=image_only_indicator, ) else: sample = upsample_block( hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, image_only_indicator=image_only_indicator, ) # if return_intermediate_features: intermediate_features.append(sample) # 6. post-process sample = self.conv_norm_out(sample) sample = self.conv_act(sample) sample = self.conv_out(sample) # 7. Reshape back to original shape sample = sample.reshape(batch_size, num_frames, *sample.shape[1:]) if not return_dict: return (sample, intermediate_features) return UNetSpatioTemporalConditionOutput( sample=sample, intermediate_features=intermediate_features, ) @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], custom_resume=False, **kwargs): r""" Instantiate a pretrained PyTorch model from a pretrained model configuration. The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To train the model, set it back in training mode with `model.train()`. Parameters: pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): Can be either: - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on the Hub. - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved with [`~ModelMixin.save_pretrained`]. cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. torch_dtype (`str` or `torch.dtype`, *optional*): Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the dtype is automatically derived from the model's weights. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download (`bool`, *optional*, defaults to `False`): Whether or not to resume downloading the model weights and configuration files. If set to `False`, any incompletely downloaded files are deleted. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. output_loading_info (`bool`, *optional*, defaults to `False`): Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. local_files_only(`bool`, *optional*, defaults to `False`): Whether to only load local model weights and configuration files or not. If set to `True`, the model won't be downloaded from the Hub. use_auth_token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from `diffusers-cli login` (stored in `~/.huggingface`) is used. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git. from_flax (`bool`, *optional*, defaults to `False`): Load the model weights from a Flax checkpoint save file. subfolder (`str`, *optional*, defaults to `""`): The subfolder location of a model file within a larger model repository on the Hub or locally. mirror (`str`, *optional*): Mirror source to resolve accessibility issues if you're downloading a model in China. We do not guarantee the timeliness or safety of the source, and you should refer to the mirror site for more information. device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*): A map that specifies where each submodule should go. It doesn't need to be defined for each parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the same device. Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For more information about each option see [designing a device map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). max_memory (`Dict`, *optional*): A dictionary device identifier for the maximum memory. Will default to the maximum memory available for each GPU and the available CPU RAM if unset. offload_folder (`str` or `os.PathLike`, *optional*): The path to offload weights if `device_map` contains the value `"disk"`. offload_state_dict (`bool`, *optional*): If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True` when there is some disk offload. low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): Speed up model loading only loading the pretrained weights and not initializing the weights. This also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this argument to `True` will raise an error. variant (`str`, *optional*): Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when loading `from_flax`. use_safetensors (`bool`, *optional*, defaults to `None`): If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the `safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors` weights. If set to `False`, `safetensors` weights are not loaded. To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with `huggingface-cli login`. You can also activate the special ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a firewalled environment. Example: ```py from diffusers import UNet2DConditionModel unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet") ``` If you get the error message below, you need to finetune the weights for your downstream task: ```bash Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match: - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. ``` """ cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False) force_download = kwargs.pop("force_download", False) from_flax = kwargs.pop("from_flax", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) output_loading_info = kwargs.pop("output_loading_info", False) local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE) use_auth_token = kwargs.pop("use_auth_token", None) revision = kwargs.pop("revision", None) torch_dtype = kwargs.pop("torch_dtype", None) subfolder = kwargs.pop("subfolder", None) device_map = kwargs.pop("device_map", None) max_memory = kwargs.pop("max_memory", None) offload_folder = kwargs.pop("offload_folder", None) offload_state_dict = kwargs.pop("offload_state_dict", False) low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT) variant = kwargs.pop("variant", None) use_safetensors = kwargs.pop("use_safetensors", None) allow_pickle = False if use_safetensors is None: use_safetensors = True allow_pickle = True if low_cpu_mem_usage and not is_accelerate_available(): low_cpu_mem_usage = False logger.warning( "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" " install accelerate\n```\n." ) if device_map is not None and not is_accelerate_available(): raise NotImplementedError( "Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set" " `device_map=None`. You can install accelerate with `pip install accelerate`." ) # Check if we can handle device_map and dispatching the weights if device_map is not None and not is_torch_version(">=", "1.9.0"): raise NotImplementedError( "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set" " `device_map=None`." ) if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): raise NotImplementedError( "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" " `low_cpu_mem_usage=False`." ) if low_cpu_mem_usage is False and device_map is not None: raise ValueError( f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and" " dispatching. Please make sure to set `low_cpu_mem_usage=True`." ) # Load config if we don't provide a configuration config_path = pretrained_model_name_or_path user_agent = { "diffusers": __version__, "file_type": "model", "framework": "pytorch", } # load config config, unused_kwargs, commit_hash = cls.load_config( config_path, cache_dir=cache_dir, return_unused_kwargs=True, return_commit_hash=True, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, use_auth_token=use_auth_token, revision=revision, subfolder=subfolder, device_map=device_map, max_memory=max_memory, offload_folder=offload_folder, offload_state_dict=offload_state_dict, user_agent=user_agent, **kwargs, ) if not custom_resume: # NOTE: update in_channels, for additional mask concatentation config['in_channels'] = config['in_channels'] + 1 # load model model_file = None if from_flax: model_file = _get_model_file( pretrained_model_name_or_path, weights_name=FLAX_WEIGHTS_NAME, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, use_auth_token=use_auth_token, revision=revision, subfolder=subfolder, user_agent=user_agent, commit_hash=commit_hash, ) model = cls.from_config(config, **unused_kwargs) # Convert the weights from diffusers.models.modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model model = load_flax_checkpoint_in_pytorch_model(model, model_file) else: if use_safetensors: try: model_file = _get_model_file( pretrained_model_name_or_path, weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant), cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, use_auth_token=use_auth_token, revision=revision, subfolder=subfolder, user_agent=user_agent, commit_hash=commit_hash, ) except IOError as e: if not allow_pickle: raise e pass if model_file is None: model_file = _get_model_file( pretrained_model_name_or_path, weights_name=_add_variant(WEIGHTS_NAME, variant), cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, use_auth_token=use_auth_token, revision=revision, subfolder=subfolder, user_agent=user_agent, commit_hash=commit_hash, ) if low_cpu_mem_usage: # Instantiate model with empty weights with accelerate.init_empty_weights(): model = cls.from_config(config, **unused_kwargs) # if device_map is None, load the state dict and move the params from meta device to the cpu if device_map is None: param_device = "cpu" state_dict = load_state_dict(model_file, variant=variant) if not custom_resume: # NOTE update conv_in_weight conv_in_weight = state_dict['conv_in.weight'] assert conv_in_weight.shape == (320, 8, 3, 3) conv_in_weight_new = torch.randn(320, 9, 3, 3).to(conv_in_weight.device).to(conv_in_weight.dtype) conv_in_weight_new[:, :8, :, :] = conv_in_weight state_dict['conv_in.weight'] = conv_in_weight_new # NOTE add mask_token mask_token = torch.randn(1, 1, 4, 1, 1).to(conv_in_weight.device).to(conv_in_weight.dtype) state_dict["mask_token"] = mask_token model._convert_deprecated_attention_blocks(state_dict) # move the params from meta device to cpu missing_keys = set(model.state_dict().keys()) - set(state_dict.keys()) if len(missing_keys) > 0: raise ValueError( f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are" f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass" " `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize" " those weights or else make sure your checkpoint file is correct." ) unexpected_keys = load_model_dict_into_meta( model, state_dict, device=param_device, dtype=torch_dtype, model_name_or_path=pretrained_model_name_or_path, ) if cls._keys_to_ignore_on_load_unexpected is not None: for pat in cls._keys_to_ignore_on_load_unexpected: unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] if len(unexpected_keys) > 0: logger.warn( f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}" ) else: # else let accelerate handle loading and dispatching. # Load weights and dispatch according to the device_map # by default the device_map is None and the weights are loaded on the CPU try: accelerate.load_checkpoint_and_dispatch( model, model_file, device_map, max_memory=max_memory, offload_folder=offload_folder, offload_state_dict=offload_state_dict, dtype=torch_dtype, ) except AttributeError as e: # When using accelerate loading, we do not have the ability to load the state # dict and rename the weight names manually. Additionally, accelerate skips # torch loading conventions and directly writes into `module.{_buffers, _parameters}` # (which look like they should be private variables?), so we can't use the standard hooks # to rename parameters on load. We need to mimic the original weight names so the correct # attributes are available. After we have loaded the weights, we convert the deprecated # names to the new non-deprecated names. Then we _greatly encourage_ the user to convert # the weights so we don't have to do this again. if "'Attention' object has no attribute" in str(e): logger.warn( f"Taking `{str(e)}` while using `accelerate.load_checkpoint_and_dispatch` to mean {pretrained_model_name_or_path}" " was saved with deprecated attention block weight names. We will load it with the deprecated attention block" " names and convert them on the fly to the new attention block format. Please re-save the model after this conversion," " so we don't have to do the on the fly renaming in the future. If the model is from a hub checkpoint," " please also re-upload it or open a PR on the original repository." ) model._temp_convert_self_to_deprecated_attention_blocks() accelerate.load_checkpoint_and_dispatch( model, model_file, device_map, max_memory=max_memory, offload_folder=offload_folder, offload_state_dict=offload_state_dict, dtype=torch_dtype, ) model._undo_temp_convert_self_to_deprecated_attention_blocks() else: raise e loading_info = { "missing_keys": [], "unexpected_keys": [], "mismatched_keys": [], "error_msgs": [], } else: model = cls.from_config(config, **unused_kwargs) state_dict = load_state_dict(model_file, variant=variant) model._convert_deprecated_attention_blocks(state_dict) model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model( model, state_dict, model_file, pretrained_model_name_or_path, ignore_mismatched_sizes=ignore_mismatched_sizes, ) loading_info = { "missing_keys": missing_keys, "unexpected_keys": unexpected_keys, "mismatched_keys": mismatched_keys, "error_msgs": error_msgs, } if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype): raise ValueError( f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}." ) elif torch_dtype is not None: model = model.to(torch_dtype) model.register_to_config(_name_or_path=pretrained_model_name_or_path) # Set model in evaluation mode to deactivate DropOut modules by default model.eval() if output_loading_info: return model, loading_info return model