Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class VectorQuantizer(nn.Module): | |
""" | |
see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py | |
____________________________________________ | |
Discretization bottleneck part of the VQ-VAE. | |
Inputs: | |
- n_e : number of embeddings | |
- e_dim : dimension of embedding | |
- beta : commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2 | |
_____________________________________________ | |
""" | |
def __init__(self, n_e, e_dim, beta): | |
super(VectorQuantizer, self).__init__() | |
self.n_e = n_e | |
self.e_dim = e_dim | |
self.beta = beta | |
self.embedding = nn.Embedding(self.n_e, self.e_dim) | |
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) | |
def forward(self, z): | |
""" | |
Inputs the output of the encoder network z and maps it to a discrete | |
one-hot vector that is the index of the closest embedding vector e_j | |
z (continuous) -> z_q (discrete) | |
z.shape = (batch, channel, height, width) | |
quantization pipeline: | |
1. get encoder input (B,C,H,W) | |
2. flatten input to (B*H*W,C) | |
""" | |
# reshape z -> (batch, height, width, channel) and flatten | |
z = z.permute(0, 2, 3, 1).contiguous() | |
z_flattened = z.view(-1, self.e_dim) | |
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z | |
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ | |
torch.sum(self.embedding.weight**2, dim=1) - 2 * \ | |
torch.matmul(z_flattened, self.embedding.weight.t()) | |
## could possible replace this here | |
# #\start... | |
# find closest encodings | |
min_value, min_encoding_indices = torch.min(d, dim=1) | |
min_encoding_indices = min_encoding_indices.unsqueeze(1) | |
min_encodings = torch.zeros( | |
min_encoding_indices.shape[0], self.n_e).to(z) | |
min_encodings.scatter_(1, min_encoding_indices, 1) | |
# dtype min encodings: torch.float32 | |
# min_encodings shape: torch.Size([2048, 512]) | |
# min_encoding_indices.shape: torch.Size([2048, 1]) | |
# get quantized latent vectors | |
z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape) | |
#.........\end | |
# with: | |
# .........\start | |
#min_encoding_indices = torch.argmin(d, dim=1) | |
#z_q = self.embedding(min_encoding_indices) | |
# ......\end......... (TODO) | |
# compute loss for embedding | |
loss = torch.mean((z_q.detach()-z)**2) + self.beta * \ | |
torch.mean((z_q - z.detach()) ** 2) | |
# preserve gradients | |
z_q = z + (z_q - z).detach() | |
# perplexity | |
e_mean = torch.mean(min_encodings, dim=0) | |
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10))) | |
# reshape back to match original input shape | |
z_q = z_q.permute(0, 3, 1, 2).contiguous() | |
return z_q, loss, (perplexity, min_encodings, min_encoding_indices, d) | |
def get_codebook_entry(self, indices, shape): | |
# shape specifying (batch, height, width, channel) | |
# TODO: check for more easy handling with nn.Embedding | |
min_encodings = torch.zeros(indices.shape[0], self.n_e).to(indices) | |
min_encodings.scatter_(1, indices[:,None], 1) | |
# get quantized latent vectors | |
z_q = torch.matmul(min_encodings.float(), self.embedding.weight) | |
if shape is not None: | |
z_q = z_q.view(shape) | |
# reshape back to match original input shape | |
z_q = z_q.permute(0, 3, 1, 2).contiguous() | |
return z_q | |
# pytorch_diffusion + derived encoder decoder | |
def nonlinearity(x): | |
# swish | |
return x*torch.sigmoid(x) | |
def Normalize(in_channels): | |
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) | |
class Upsample(nn.Module): | |
def __init__(self, in_channels, with_conv): | |
super().__init__() | |
self.with_conv = with_conv | |
if self.with_conv: | |
self.conv = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
def forward(self, x): | |
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") | |
if self.with_conv: | |
x = self.conv(x) | |
return x | |
class Downsample(nn.Module): | |
def __init__(self, in_channels, with_conv): | |
super().__init__() | |
self.with_conv = with_conv | |
if self.with_conv: | |
# no asymmetric padding in torch conv, must do it ourselves | |
self.conv = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=3, | |
stride=2, | |
padding=0) | |
def forward(self, x): | |
if self.with_conv: | |
pad = (0,1,0,1) | |
x = torch.nn.functional.pad(x, pad, mode="constant", value=0) | |
x = self.conv(x) | |
else: | |
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) | |
return x | |
class ResnetBlock(nn.Module): | |
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, | |
dropout, temb_channels=512): | |
super().__init__() | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
self.norm1 = Normalize(in_channels) | |
self.conv1 = torch.nn.Conv2d(in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
if temb_channels > 0: | |
self.temb_proj = torch.nn.Linear(temb_channels, | |
out_channels) | |
self.norm2 = Normalize(out_channels) | |
self.dropout = torch.nn.Dropout(dropout) | |
self.conv2 = torch.nn.Conv2d(out_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
self.conv_shortcut = torch.nn.Conv2d(in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
else: | |
self.nin_shortcut = torch.nn.Conv2d(in_channels, | |
out_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
def forward(self, x, temb): | |
h = x | |
h = self.norm1(h) | |
h = nonlinearity(h) | |
h = self.conv1(h) | |
if temb is not None: | |
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None] | |
h = self.norm2(h) | |
h = nonlinearity(h) | |
h = self.dropout(h) | |
h = self.conv2(h) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
x = self.conv_shortcut(x) | |
else: | |
x = self.nin_shortcut(x) | |
return x+h | |
class MultiHeadAttnBlock(nn.Module): | |
def __init__(self, in_channels, head_size=1): | |
super().__init__() | |
self.in_channels = in_channels | |
self.head_size = head_size | |
self.att_size = in_channels // head_size | |
assert(in_channels % head_size == 0), 'The size of head should be divided by the number of channels.' | |
self.norm1 = Normalize(in_channels) | |
self.norm2 = Normalize(in_channels) | |
self.q = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.k = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.v = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.proj_out = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.num = 0 | |
def forward(self, x, y=None): | |
h_ = x | |
h_ = self.norm1(h_) | |
if y is None: | |
y = h_ | |
else: | |
y = self.norm2(y) | |
q = self.q(y) | |
k = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
b,c,h,w = q.shape | |
q = q.reshape(b, self.head_size, self.att_size ,h*w) | |
q = q.permute(0, 3, 1, 2) # b, hw, head, att | |
k = k.reshape(b, self.head_size, self.att_size ,h*w) | |
k = k.permute(0, 3, 1, 2) | |
v = v.reshape(b, self.head_size, self.att_size ,h*w) | |
v = v.permute(0, 3, 1, 2) | |
q = q.transpose(1, 2) | |
v = v.transpose(1, 2) | |
k = k.transpose(1, 2).transpose(2,3) | |
scale = int(self.att_size)**(-0.5) | |
q.mul_(scale) | |
w_ = torch.matmul(q, k) | |
w_ = F.softmax(w_, dim=3) | |
w_ = w_.matmul(v) | |
w_ = w_.transpose(1, 2).contiguous() # [b, h*w, head, att] | |
w_ = w_.view(b, h, w, -1) | |
w_ = w_.permute(0, 3, 1, 2) | |
w_ = self.proj_out(w_) | |
return x+w_ | |
class MultiHeadEncoder(nn.Module): | |
def __init__(self, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks=2, | |
attn_resolutions=[16], dropout=0.0, resamp_with_conv=True, in_channels=3, | |
resolution=512, z_channels=256, double_z=True, enable_mid=True, | |
head_size=1, **ignore_kwargs): | |
super().__init__() | |
self.ch = ch | |
self.temb_ch = 0 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
self.enable_mid = enable_mid | |
# downsampling | |
self.conv_in = torch.nn.Conv2d(in_channels, | |
self.ch, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
curr_res = resolution | |
in_ch_mult = (1,)+tuple(ch_mult) | |
self.down = nn.ModuleList() | |
for i_level in range(self.num_resolutions): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_in = ch*in_ch_mult[i_level] | |
block_out = ch*ch_mult[i_level] | |
for i_block in range(self.num_res_blocks): | |
block.append(ResnetBlock(in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout)) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(MultiHeadAttnBlock(block_in, head_size)) | |
down = nn.Module() | |
down.block = block | |
down.attn = attn | |
if i_level != self.num_resolutions-1: | |
down.downsample = Downsample(block_in, resamp_with_conv) | |
curr_res = curr_res // 2 | |
self.down.append(down) | |
# middle | |
if self.enable_mid: | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock(in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout) | |
self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size) | |
self.mid.block_2 = ResnetBlock(in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout) | |
# end | |
self.norm_out = Normalize(block_in) | |
self.conv_out = torch.nn.Conv2d(block_in, | |
2*z_channels if double_z else z_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
def forward(self, x): | |
#assert x.shape[2] == x.shape[3] == self.resolution, "{}, {}, {}".format(x.shape[2], x.shape[3], self.resolution) | |
hs = {} | |
# timestep embedding | |
temb = None | |
# downsampling | |
h = self.conv_in(x) | |
hs['in'] = h | |
for i_level in range(self.num_resolutions): | |
for i_block in range(self.num_res_blocks): | |
h = self.down[i_level].block[i_block](h, temb) | |
if len(self.down[i_level].attn) > 0: | |
h = self.down[i_level].attn[i_block](h) | |
if i_level != self.num_resolutions-1: | |
# hs.append(h) | |
hs['block_'+str(i_level)] = h | |
h = self.down[i_level].downsample(h) | |
# middle | |
# h = hs[-1] | |
if self.enable_mid: | |
h = self.mid.block_1(h, temb) | |
hs['block_'+str(i_level)+'_atten'] = h | |
h = self.mid.attn_1(h) | |
h = self.mid.block_2(h, temb) | |
hs['mid_atten'] = h | |
# end | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
# hs.append(h) | |
hs['out'] = h | |
return hs | |
class MultiHeadDecoder(nn.Module): | |
def __init__(self, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks=2, | |
attn_resolutions=16, dropout=0.0, resamp_with_conv=True, in_channels=3, | |
resolution=512, z_channels=256, give_pre_end=False, enable_mid=True, | |
head_size=1, **ignorekwargs): | |
super().__init__() | |
self.ch = ch | |
self.temb_ch = 0 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
self.give_pre_end = give_pre_end | |
self.enable_mid = enable_mid | |
# compute in_ch_mult, block_in and curr_res at lowest res | |
in_ch_mult = (1,)+tuple(ch_mult) | |
block_in = ch*ch_mult[self.num_resolutions-1] | |
curr_res = resolution // 2**(self.num_resolutions-1) | |
self.z_shape = (1,z_channels,curr_res,curr_res) | |
print("Working with z of shape {} = {} dimensions.".format( | |
self.z_shape, np.prod(self.z_shape))) | |
# z to block_in | |
self.conv_in = torch.nn.Conv2d(z_channels, | |
block_in, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
# middle | |
if self.enable_mid: | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock(in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout) | |
self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size) | |
self.mid.block_2 = ResnetBlock(in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout) | |
# upsampling | |
self.up = nn.ModuleList() | |
for i_level in reversed(range(self.num_resolutions)): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_out = ch*ch_mult[i_level] | |
for i_block in range(self.num_res_blocks+1): | |
block.append(ResnetBlock(in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout)) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(MultiHeadAttnBlock(block_in, head_size)) | |
up = nn.Module() | |
up.block = block | |
up.attn = attn | |
if i_level != 0: | |
up.upsample = Upsample(block_in, resamp_with_conv) | |
curr_res = curr_res * 2 | |
self.up.insert(0, up) # prepend to get consistent order | |
# end | |
self.norm_out = Normalize(block_in) | |
self.conv_out = torch.nn.Conv2d(block_in, | |
out_ch, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
def forward(self, z): | |
#assert z.shape[1:] == self.z_shape[1:] | |
self.last_z_shape = z.shape | |
# timestep embedding | |
temb = None | |
# z to block_in | |
h = self.conv_in(z) | |
# middle | |
if self.enable_mid: | |
h = self.mid.block_1(h, temb) | |
h = self.mid.attn_1(h) | |
h = self.mid.block_2(h, temb) | |
# upsampling | |
for i_level in reversed(range(self.num_resolutions)): | |
for i_block in range(self.num_res_blocks+1): | |
h = self.up[i_level].block[i_block](h, temb) | |
if len(self.up[i_level].attn) > 0: | |
h = self.up[i_level].attn[i_block](h) | |
if i_level != 0: | |
h = self.up[i_level].upsample(h) | |
# end | |
if self.give_pre_end: | |
return h | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
return h | |
class MultiHeadDecoderTransformer(nn.Module): | |
def __init__(self, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks=2, | |
attn_resolutions=16, dropout=0.0, resamp_with_conv=True, in_channels=3, | |
resolution=512, z_channels=256, give_pre_end=False, enable_mid=True, | |
head_size=1, **ignorekwargs): | |
super().__init__() | |
self.ch = ch | |
self.temb_ch = 0 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
self.give_pre_end = give_pre_end | |
self.enable_mid = enable_mid | |
# compute in_ch_mult, block_in and curr_res at lowest res | |
in_ch_mult = (1,)+tuple(ch_mult) | |
block_in = ch*ch_mult[self.num_resolutions-1] | |
curr_res = resolution // 2**(self.num_resolutions-1) | |
self.z_shape = (1,z_channels,curr_res,curr_res) | |
print("Working with z of shape {} = {} dimensions.".format( | |
self.z_shape, np.prod(self.z_shape))) | |
# z to block_in | |
self.conv_in = torch.nn.Conv2d(z_channels, | |
block_in, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
# middle | |
if self.enable_mid: | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock(in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout) | |
self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size) | |
self.mid.block_2 = ResnetBlock(in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout) | |
# upsampling | |
self.up = nn.ModuleList() | |
for i_level in reversed(range(self.num_resolutions)): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_out = ch*ch_mult[i_level] | |
for i_block in range(self.num_res_blocks+1): | |
block.append(ResnetBlock(in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout)) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(MultiHeadAttnBlock(block_in, head_size)) | |
up = nn.Module() | |
up.block = block | |
up.attn = attn | |
if i_level != 0: | |
up.upsample = Upsample(block_in, resamp_with_conv) | |
curr_res = curr_res * 2 | |
self.up.insert(0, up) # prepend to get consistent order | |
# end | |
self.norm_out = Normalize(block_in) | |
self.conv_out = torch.nn.Conv2d(block_in, | |
out_ch, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
def forward(self, z, hs): | |
#assert z.shape[1:] == self.z_shape[1:] | |
# self.last_z_shape = z.shape | |
# timestep embedding | |
temb = None | |
# z to block_in | |
h = self.conv_in(z) | |
# middle | |
if self.enable_mid: | |
h = self.mid.block_1(h, temb) | |
h = self.mid.attn_1(h, hs['mid_atten']) | |
h = self.mid.block_2(h, temb) | |
# upsampling | |
for i_level in reversed(range(self.num_resolutions)): | |
for i_block in range(self.num_res_blocks+1): | |
h = self.up[i_level].block[i_block](h, temb) | |
if len(self.up[i_level].attn) > 0: | |
if 'block_'+str(i_level)+'_atten' in hs: | |
h = self.up[i_level].attn[i_block](h, hs['block_'+str(i_level)+'_atten']) | |
else: | |
h = self.up[i_level].attn[i_block](h, hs['block_'+str(i_level)]) | |
if i_level != 0: | |
h = self.up[i_level].upsample(h) | |
# end | |
if self.give_pre_end: | |
return h | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
return h | |
class VQVAEGAN(nn.Module): | |
def __init__(self, n_embed=1024, embed_dim=256, ch=128, out_ch=3, ch_mult=(1,2,4,8), | |
num_res_blocks=2, attn_resolutions=16, dropout=0.0, in_channels=3, | |
resolution=512, z_channels=256, double_z=False, enable_mid=True, | |
fix_decoder=False, fix_codebook=False, head_size=1, **ignore_kwargs): | |
super(VQVAEGAN, self).__init__() | |
self.encoder = MultiHeadEncoder(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks, | |
attn_resolutions=attn_resolutions, dropout=dropout, in_channels=in_channels, | |
resolution=resolution, z_channels=z_channels, double_z=double_z, | |
enable_mid=enable_mid, head_size=head_size) | |
self.decoder = MultiHeadDecoder(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks, | |
attn_resolutions=attn_resolutions, dropout=dropout, in_channels=in_channels, | |
resolution=resolution, z_channels=z_channels, enable_mid=enable_mid, head_size=head_size) | |
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25) | |
self.quant_conv = torch.nn.Conv2d(z_channels, embed_dim, 1) | |
self.post_quant_conv = torch.nn.Conv2d(embed_dim, z_channels, 1) | |
if fix_decoder: | |
for _, param in self.decoder.named_parameters(): | |
param.requires_grad = False | |
for _, param in self.post_quant_conv.named_parameters(): | |
param.requires_grad = False | |
for _, param in self.quantize.named_parameters(): | |
param.requires_grad = False | |
elif fix_codebook: | |
for _, param in self.quantize.named_parameters(): | |
param.requires_grad = False | |
def encode(self, x): | |
hs = self.encoder(x) | |
h = self.quant_conv(hs['out']) | |
quant, emb_loss, info = self.quantize(h) | |
return quant, emb_loss, info, hs | |
def decode(self, quant): | |
quant = self.post_quant_conv(quant) | |
dec = self.decoder(quant) | |
return dec | |
def forward(self, input): | |
quant, diff, info, hs = self.encode(input) | |
dec = self.decode(quant) | |
return dec, diff, info, hs | |
class VQVAEGANMultiHeadTransformer(nn.Module): | |
def __init__(self, | |
n_embed=1024, | |
embed_dim=256, | |
ch=64, | |
out_ch=3, | |
ch_mult=(1, 2, 2, 4, 4, 8), | |
num_res_blocks=2, | |
attn_resolutions=(16, ), | |
dropout=0.0, | |
in_channels=3, | |
resolution=512, | |
z_channels=256, | |
double_z=False, | |
enable_mid=True, | |
fix_decoder=False, | |
fix_codebook=True, | |
fix_encoder=False, | |
head_size=4, | |
ex_multi_scale_num=1): | |
super(VQVAEGANMultiHeadTransformer, self).__init__() | |
self.encoder = MultiHeadEncoder(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks, | |
attn_resolutions=attn_resolutions, dropout=dropout, in_channels=in_channels, | |
resolution=resolution, z_channels=z_channels, double_z=double_z, | |
enable_mid=enable_mid, head_size=head_size) | |
for i in range(ex_multi_scale_num): | |
attn_resolutions = [attn_resolutions[0], attn_resolutions[-1]*2] | |
self.decoder = MultiHeadDecoderTransformer(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks, | |
attn_resolutions=attn_resolutions, dropout=dropout, in_channels=in_channels, | |
resolution=resolution, z_channels=z_channels, enable_mid=enable_mid, head_size=head_size) | |
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25) | |
self.quant_conv = torch.nn.Conv2d(z_channels, embed_dim, 1) | |
self.post_quant_conv = torch.nn.Conv2d(embed_dim, z_channels, 1) | |
if fix_decoder: | |
for _, param in self.decoder.named_parameters(): | |
param.requires_grad = False | |
for _, param in self.post_quant_conv.named_parameters(): | |
param.requires_grad = False | |
for _, param in self.quantize.named_parameters(): | |
param.requires_grad = False | |
elif fix_codebook: | |
for _, param in self.quantize.named_parameters(): | |
param.requires_grad = False | |
if fix_encoder: | |
for _, param in self.encoder.named_parameters(): | |
param.requires_grad = False | |
for _, param in self.quant_conv.named_parameters(): | |
param.requires_grad = False | |
def encode(self, x): | |
hs = self.encoder(x) | |
h = self.quant_conv(hs['out']) | |
quant, emb_loss, info = self.quantize(h) | |
return quant, emb_loss, info, hs | |
def decode(self, quant, hs): | |
quant = self.post_quant_conv(quant) | |
dec = self.decoder(quant, hs) | |
return dec | |
def forward(self, input): | |
quant, diff, info, hs = self.encode(input) | |
dec = self.decode(quant, hs) | |
return dec, diff, info, hs |