File size: 12,897 Bytes
6373ff8
ccc80c2
 
 
8d7d2d7
ccc80c2
6373ff8
 
b9ea7a6
3fc0dd0
b9ea7a6
 
6373ff8
8385a65
f93e467
8d7d2d7
8d65475
2c50a6c
 
 
f93e467
 
2c50a6c
16c2491
3fc0dd0
 
8d7d2d7
6373ff8
16c2491
 
ccc80c2
16c2491
a9da525
16c2491
b9ea7a6
 
9ecc297
a9da525
b9ea7a6
 
 
 
 
 
 
 
 
 
 
 
 
f93e467
ccc80c2
6373ff8
 
 
ccc80c2
6373ff8
 
422bc49
 
6373ff8
 
 
 
 
422bc49
 
6373ff8
 
 
 
422bc49
16c2491
b9ea7a6
4c93f86
 
1241278
ed27447
b5c1016
 
4c93f86
9764d93
 
b9ea7a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f93e467
9764d93
f93e467
53d0f2f
2c50a6c
 
b093e55
 
 
ccc80c2
b093e55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c50a6c
8d7d2d7
b9ea7a6
b5c1016
b8cbb2a
b9ea7a6
 
 
 
 
 
6373ff8
9e4bb4a
f93e467
 
1241278
 
c0d646a
 
 
 
 
 
cdeb4dc
 
c0d646a
cdeb4dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9ea7a6
 
 
 
cdeb4dc
 
 
 
 
 
 
 
 
 
 
 
b9ea7a6
 
 
 
cdeb4dc
4c93f86
f93e467
b5c1016
16c2491
9764d93
b9ea7a6
b5c1016
 
b8cbb2a
9764d93
16c2491
 
2c50a6c
 
b093e55
 
2c50a6c
 
16c2491
b5c1016
b8cbb2a
 
f93e467
ccc80c2
f93e467
ccc80c2
16c2491
 
ccc80c2
 
 
 
 
 
 
 
16c2491
6222acc
ccc80c2
6373ff8
8d7d2d7
b5c1016
 
b9ea7a6
6222acc
 
 
 
 
 
 
6373ff8
6222acc
422bc49
 
6222acc
 
b9ea7a6
422bc49
6222acc
 
f6c2def
 
 
 
 
 
 
6222acc
 
f93e467
 
eb74c8f
 
 
 
f93e467
2c50a6c
b9ea7a6
f93e467
b9ea7a6
f93e467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccc80c2
 
f93e467
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import os
import gradio as gr
import numpy as np
import random
import spaces
import torch
import json
import logging
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
from huggingface_hub import login
from diffusers.utils import load_image

import time
from datetime import datetime
from io import BytesIO
import torch.nn.functional as F
from PIL import Image, ImageFilter
import time
import boto3
from io import BytesIO
import re
import json

# Login Hugging Face Hub
HF_TOKEN = os.environ.get("HF_TOKEN")
login(token=HF_TOKEN)
import diffusers

# init
dtype = torch.float16  # use float16 for fast generate
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"

# load pipe
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)

# img2img model
img2img = AutoPipelineForImage2Image.from_pretrained(base_model,
                                                      vae=good_vae,
                                                      transformer=pipe.transformer,
                                                      text_encoder=pipe.text_encoder,
                                                      tokenizer=pipe.tokenizer,
                                                      text_encoder_2=pipe.text_encoder_2,
                                                      tokenizer_2=pipe.tokenizer_2,
                                                      torch_dtype=dtype
                                                     )



MAX_SEED = 2**32 - 1

class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name

    def __enter__(self):
        self.start_time = time.time()
        self.start_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.start_time))
        print(f"Activity: {self.activity_name}, Start time: {self.start_time_formatted}")
        return self
    
    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        self.end_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.end_time))
        
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
        else:
            print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
        
@spaces.GPU(duration=120)
def generate_image(orginal_image, prompt, adapter_names,  steps, seed, image_strength, cfg_scale, width, height, progress):

    
    gr.Info("Start to generate images ...")
    with calculateDuration(f"Make a new generator:{seed}"):
        pipe.to(device)
        generator = torch.Generator(device=device).manual_seed(seed)
    
    with calculateDuration("Generating image"):
        # Generate image
        if orginal_image:
            generated_image = img2img(
                prompt=prompt,
                image=orginal_image,
                strength=image_strength,
                num_inference_steps=steps,
                guidance_scale=cfg_scale,
                width=width,
                height=height,
                generator=generator,
                joint_attention_kwargs={"scale": lora_scale}
            ).images[0]
        else:
            generated_image = pipe(
                prompt=prompt,
                num_inference_steps=steps,
                guidance_scale=cfg_scale,
                width=width,
                height=height,
                max_sequence_length=512,
                generator=generator,
            ).images[0]
    
    progress(99, "Generate image success!")
    return generated_image


def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name):
    with calculateDuration("Upload images"):
        print("upload_image_to_r2", account_id, access_key, secret_key, bucket_name)
        connectionUrl = f"https://{account_id}.r2.cloudflarestorage.com"
    
        s3 = boto3.client(
            's3',
            endpoint_url=connectionUrl,
            region_name='auto',
            aws_access_key_id=access_key,
            aws_secret_access_key=secret_key
        )
    
        current_time = datetime.now().strftime("%Y/%m/%d/%H%M%S")
        image_file = f"generated_images/{current_time}_{random.randint(0, MAX_SEED)}.png"
        buffer = BytesIO()
        image.save(buffer, "PNG")
        buffer.seek(0)
        s3.upload_fileobj(buffer, bucket_name, image_file)
        print("upload finish", image_file)
        # start to generate thumbnail
        thumbnail = image.copy()
        thumbnail_width = 256
        aspect_ratio = image.height / image.width
        thumbnail_height = int(thumbnail_width * aspect_ratio)
        thumbnail = thumbnail.resize((thumbnail_width, thumbnail_height), Image.LANCZOS)
        
        # Generate the thumbnail image filename
        thumbnail_file = image_file.replace(".png", "_thumbnail.png")
        
        # Save thumbnail to buffer and upload
        thumbnail_buffer = BytesIO()
        thumbnail.save(thumbnail_buffer, "PNG")
        thumbnail_buffer.seek(0)
        s3.upload_fileobj(thumbnail_buffer, bucket_name, thumbnail_file)
        print("upload thumbnail finish", thumbnail_file)
    return image_file

def run_lora(prompt, image_url, lora_strings_json, image_strength,  cfg_scale, steps, randomize_seed, seed, width, height, upload_to_r2, account_id, access_key, secret_key, bucket, progress=gr.Progress(track_tqdm=True)):
    print("run_lora", prompt, lora_strings_json, cfg_scale, steps, width, height)
    gr.Info("Starting process")

    img2img_model = False
    orginal_image = None
    if image_url:
        orginal_image = load_image(image_url)
        img2img_model = True
    # Set random seed for reproducibility
    if randomize_seed:
        with calculateDuration("Set random seed"):
            seed = random.randint(0, MAX_SEED)

    # Load LoRA weights
    gr.Info("Start to load LoRA ...")
    
    with calculateDuration("Unloading LoRA"):
        pipe.unload_lora_weights()
        img2img.unload_lora_weights()
    
    lora_configs = None
    adapter_names = []
    
    if lora_strings_json:
        try:
            lora_configs = json.loads(lora_strings_json)
        except:
            gr.Warning("Parse lora config json failed")
            print("parse lora config json failed")
            
        if lora_configs:
            with calculateDuration("Loading LoRA weights"):
                adapter_weights = []
                for lora_info in lora_configs:
                    lora_repo = lora_info.get("repo")
                    weights = lora_info.get("weights")
                    adapter_name = lora_info.get("adapter_name")
                    adapter_weight = lora_info.get("adapter_weight")
                    
                    if lora_repo and weights and adapter_name:
                        retry_count = 3
                        for attempt in range(retry_count):
                            try:
                                if img2img_model:
                                    img2img.load_lora_weights(lora_repo, weight_name=weights, adapter_name=adapter_name)
                                else:
                                    pipe.load_lora_weights(lora_repo, weight_name=weights, adapter_name=adapter_name)
                                adapter_names.append(adapter_name)
                                adapter_weights.append(adapter_weight)
                                break  # Load successful, exit retry loop
                            except ValueError as e:
                                print(f"Attempt {attempt+1}/{retry_count} failed to load LoRA adapter: {e}")
                                if attempt == retry_count - 1:
                                    print(f"Error loading LoRA adapter: {adapter_name} after {retry_count} attempts")
                                else:
                                    time.sleep(1)  # Wait before retrying
                        
                # set lora weights
                if len(adapter_names) > 0:
                    if img2img_model:
                        img2img.set_adapters(adapter_names, adapter_weights=adapter_weights)
                    else:
                        pipe.set_adapters(adapter_names, adapter_weights=adapter_weights)

    
    # Generate image
    error_message = ""
    try:
        print("Start applying for zeroGPU resources")
        final_image = generate_image(orginal_image, prompt, adapter_names, steps, seed, image_strength, cfg_scale, width, height, progress)
    except Exception as e:
        error_message =  str(e)
        gr.Error(error_message)
        print("Run error", e)
        final_image = None
        
    if final_image:
        if upload_to_r2:
            url = upload_image_to_r2(final_image, account_id, access_key, secret_key, bucket)
            result = {"status": "success", "message": "upload image success", "url": url}    
        else:
            result = {"status": "success", "message": "Image generated but not uploaded"}
    else:
        result = {"status": "failed", "message": error_message}

    gr.Info("Completed!")
    progress(100, "Completed!")

    return final_image, seed, json.dumps(result)

# Gradio interface

css="""
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown("flux-dev-multi-lora")
    with gr.Row():
        
        with gr.Column():

            prompt = gr.Text(label="Prompt", placeholder="Enter prompt", lines=10)
            lora_strings_json = gr.Text(label="LoRA Configs (JSON List String)", placeholder='[{"repo": "lora_repo1", "weights": "weights1", "adapter_name": "adapter_name1", "adapter_weight": 1}, {"repo": "lora_repo2", "weights": "weights2", "adapter_name": "adapter_name2", "adapter_weight": 1}]', lines=5)
            image_url = gr.Text(label="Image url", placeholder="Enter image url to enable image to image model", lines=1)
            run_button = gr.Button("Run", scale=0)

            with gr.Accordion("Advanced Settings", open=False):

                with gr.Row():
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

                with gr.Row():
                    width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
                    height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)

                with gr.Row():
                    image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
                    cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) 

                upload_to_r2 = gr.Checkbox(label="Upload to R2", value=False)
                account_id = gr.Textbox(label="Account Id", placeholder="Enter R2 account id")
                access_key = gr.Textbox(label="Access Key", placeholder="Enter R2 access key here")
                secret_key = gr.Textbox(label="Secret Key", placeholder="Enter R2 secret key here")
                bucket = gr.Textbox(label="Bucket Name", placeholder="Enter R2 bucket name here")
        

        with gr.Column():
            result = gr.Image(label="Result", show_label=False)
            seed_output = gr.Text(label="Seed")
            json_text = gr.Text(label="Result JSON")
    gr.Markdown("**Disclaimer:**")
    gr.Markdown(
        "This demo is only for research purpose. This space owner cannot be held responsible for the generation of NSFW (Not Safe For Work) content through the use of this demo. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards. This space owner provides the tools, but the responsibility for their use lies with the individual user."
    )
    inputs = [
        prompt,
        image_url,
        lora_strings_json,
        image_strength,
        cfg_scale,
        steps,
        randomize_seed,
        seed,
        width,
        height,
        upload_to_r2,
        account_id,
        access_key,
        secret_key,
        bucket
    ]

    outputs = [result, seed_output, json_text]

    run_button.click(
        fn=run_lora,
        inputs=inputs,
        outputs=outputs
    )

demo.queue().launch()