Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,838 Bytes
6373ff8 ccc80c2 8d7d2d7 ccc80c2 6373ff8 f93e467 3fc0dd0 6373ff8 8385a65 f93e467 8d7d2d7 2c50a6c f93e467 2c50a6c f93e467 3fc0dd0 8d7d2d7 6373ff8 f93e467 ccc80c2 f93e467 a9da525 f93e467 9ecc297 a9da525 f93e467 ccc80c2 6373ff8 ccc80c2 6373ff8 422bc49 6373ff8 422bc49 6373ff8 422bc49 6373ff8 f93e467 2c50a6c 8d7d2d7 6373ff8 422bc49 f93e467 2c50a6c 6373ff8 9ecc297 f93e467 9ecc297 f93e467 53d0f2f 2c50a6c ccc80c2 2c50a6c 8d7d2d7 422bc49 f93e467 2c50a6c dd84634 2c50a6c dd84634 2c50a6c dd84634 2c50a6c dd84634 2c50a6c dd84634 2c50a6c f93e467 6373ff8 9e4bb4a f93e467 f6c2def f93e467 2c50a6c f93e467 2c50a6c 9ecc297 f93e467 ccc80c2 f93e467 ccc80c2 f93e467 ccc80c2 f93e467 6222acc ccc80c2 6373ff8 8d7d2d7 2c50a6c f93e467 2c50a6c 6222acc 6373ff8 6222acc 422bc49 6222acc 422bc49 6222acc f6c2def 6222acc f93e467 2c50a6c f93e467 ccc80c2 f93e467 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import os
import gradio as gr
import numpy as np
import random
import spaces
import torch
import json
import logging
from diffusers import DiffusionPipeline
from huggingface_hub import login
import time
from datetime import datetime
from io import BytesIO
# from diffusers.models.attention_processor import AttentionProcessor
from diffusers.models.attention_processor import AttnProcessor2_0
import torch.nn.functional as F
import time
import boto3
from io import BytesIO
import re
import json
# 登录 Hugging Face Hub
HF_TOKEN = os.environ.get("HF_TOKEN")
login(token=HF_TOKEN)
import diffusers
print(diffusers.__version__)
# 初始化
dtype = torch.float16 # 您可以根据需要调整数据类型
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev" # 替换为您的模型
# 加载管道
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)
MAX_SEED = 2**32 - 1
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
self.start_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.start_time))
print(f"Activity: {self.activity_name}, Start time: {self.start_time_formatted}")
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
self.end_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.end_time))
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
print(f"Activity: {self.activity_name}, End time: {self.start_time_formatted}")
# 生成图像的函数
@spaces.GPU
@torch.inference_mode()
def generate_image(prompt, steps, seed, cfg_scale, width, height, progress):
pipe.to(device)
generator = torch.Generator(device=device).manual_seed(seed)
with calculateDuration("Generating image"):
# Generate image
print(prompt, steps, seed, cfg_scale, width, height)
generated_image = pipe(
prompt=prompt,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
).images[0]
progress(99, "Generate success!")
return generated_image
def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name):
print("upload_image_to_r2", account_id, access_key, secret_key, bucket_name)
connectionUrl = f"https://{account_id}.r2.cloudflarestorage.com"
s3 = boto3.client(
's3',
endpoint_url=connectionUrl,
region_name='auto',
aws_access_key_id=access_key,
aws_secret_access_key=secret_key
)
current_time = datetime.now().strftime("%Y/%m/%d/%H%M%S")
image_file = f"generated_images/{current_time}_{random.randint(0, MAX_SEED)}.png"
buffer = BytesIO()
image.save(buffer, "PNG")
buffer.seek(0)
s3.upload_fileobj(buffer, bucket_name, image_file)
print("upload finish", image_file)
return image_file
def run_lora(prompt, lora_strings_json, cfg_scale, steps, randomize_seed, seed, width, height, upload_to_r2, account_id, access_key, secret_key, bucket, progress=gr.Progress(track_tqdm=True)):
# Load LoRA weights
if lora_strings_json:
try:
lora_configs = json.loads(lora_strings_json)
except:
lora_configs = None
if lora_configs:
with calculateDuration("Loading LoRA weights"):
pipe.unload_lora_weights()
adapter_names = []
adapter_weights = []
for lora_info in lora_configs:
lora_repo = lora_info.get("repo")
weights = lora_info.get("weights")
adapter_name = lora_info.get("adapter_name")
adapter_weight = lora_info.get("adapter_weight")
if lora_repo and weights and adapter_name:
# 加载 LoRA 权重
pipe.load_lora_weights(lora_repo, weight_name=weights, adapter_name=adapter_name)
adapter_names.append(adapter_name)
adapter_weights.append(adapter_weight)
pipe.set_adapters(adapter_names, adapter_weights=adapter_weights)
# Set random seed for reproducibility
if randomize_seed:
with calculateDuration("Set random seed"):
seed = random.randint(0, MAX_SEED)
# Generate image
final_image = generate_image(prompt, steps, seed, cfg_scale, width, height, progress)
if final_image:
if upload_to_r2:
with calculateDuration("Upload image"):
url = upload_image_to_r2(final_image, account_id, access_key, secret_key, bucket)
result = {"status": "success", "message": "upload image success", "url": url}
else:
result = {"status": "success", "message": "Image generated but not uploaded"}
progress(100, "Completed!")
return final_image, seed, json.dumps(result)
# Gradio 界面
css="""
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("Flux with LoRA")
with gr.Row():
with gr.Column():
prompt = gr.Text(label="Prompt", placeholder="Enter prompt", lines=2)
lora_strings_json = gr.Text(label="LoRA Strings (JSON List)", placeholder='[{"repo": "lora_repo1", "weights": "weights1", "adapter_name": "adapter_name1"}, {"repo": "lora_repo2", "weights": "weights2", "adapter_name": "adapter_name2"}]', lines=5)
run_button = gr.Button("Run", scale=0)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
upload_to_r2 = gr.Checkbox(label="Upload to R2", value=False)
account_id = gr.Textbox(label="Account Id", placeholder="Enter R2 account id")
access_key = gr.Textbox(label="Access Key", placeholder="Enter R2 access key here")
secret_key = gr.Textbox(label="Secret Key", placeholder="Enter R2 secret key here")
bucket = gr.Textbox(label="Bucket Name", placeholder="Enter R2 bucket name here")
with gr.Column():
result = gr.Image(label="Result", show_label=False)
seed_output = gr.Text(label="Seed")
json_text = gr.Text(label="Result JSON")
inputs = [
prompt,
lora_strings_json,
cfg_scale,
steps,
randomize_seed,
seed,
width,
height,
upload_to_r2,
account_id,
access_key,
secret_key,
bucket
]
outputs = [result, seed_output, json_text]
run_button.click(
fn=run_lora,
inputs=inputs,
outputs=outputs
)
demo.queue().launch()
|