Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,947 Bytes
6373ff8 ccc80c2 6373ff8 ccc80c2 6373ff8 3fc0dd0 6373ff8 f6c2def 8385a65 53d0f2f 8385a65 a9da525 6373ff8 3fc0dd0 6373ff8 ccc80c2 6373ff8 a9da525 53d0f2f a9da525 9ecc297 a9da525 6373ff8 ccc80c2 6373ff8 ccc80c2 6373ff8 f6c2def 53d0f2f a9da525 6373ff8 53d0f2f 6373ff8 9e4bb4a 6373ff8 53d0f2f 9ecc297 9e4bb4a 6373ff8 53d0f2f a9da525 ccc80c2 6373ff8 a9da525 53d0f2f a9da525 6373ff8 9e4bb4a 6373ff8 a9da525 f6c2def 4ba7094 f6c2def 9ecc297 4ba7094 ccc80c2 6222acc ccc80c2 6373ff8 6222acc a9da525 6222acc 5f10541 6373ff8 6222acc f6c2def 6222acc f6c2def 6373ff8 ccc80c2 6373ff8 a9da525 4ba7094 ccc80c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import os
import gradio as gr
import numpy as np
import random
import spaces
from diffusers import DiffusionPipeline
import torch
import json
import logging
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from huggingface_hub import login
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import copy
import random
import time
import boto3
from io import BytesIO
from datetime import datetime
from transformers import AutoTokenizer
from diffusers import UNet2DConditionModel
HF_TOKEN = os.environ.get("HF_TOKEN")
login(token=HF_TOKEN)
# init
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"
# unet = UNet2DConditionModel.from_pretrained(
# base_model,
# torch_dtype=torch.float16,
# use_safetensors=True,
# variant="fp16",
# subfolder="unet",
# # ).to("cuda")
# tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)
MAX_SEED = 2**32-1
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name):
print("upload_image_to_r2", account_id, access_key, secret_key, bucket_name)
connectionUrl = f"https://{account_id}.r2.cloudflarestorage.com"
s3 = boto3.client(
's3',
endpoint_url=connectionUrl,
region_name='auto',
aws_access_key_id=access_key,
aws_secret_access_key=secret_key
)
current_time = datetime.now().strftime("%Y/%m/%d/%H%M%S")
image_file = f"generated_images/{current_time}_{random.randint(0, MAX_SEED)}.png"
buffer = BytesIO()
image.save(buffer, "PNG")
buffer.seek(0)
s3.upload_fileobj(buffer, bucket_name, image_file)
print("upload finish", image_file)
return image_file
@spaces.GPU
def generate_image(prompt, steps, seed, cfg_scale, width, height, progress):
pipe.to("cuda")
text_inputs = pipe.tokenizer(prompt, return_tensors="pt").to("cuda")
input_ids = text_inputs.input_ids[0]
# 获取每个主体对应的令牌 ID
boy_token_id = pipe.tokenizer.convert_tokens_to_ids("boy_asia_05")
print(boy_token_id)
girl_token_id = pipe.tokenizer.convert_tokens_to_ids("girl_asia_04")
print(girl_token_id)
# 找到每个主体在输入中的索引位置
boy_indices = (input_ids == boy_token_id).nonzero(as_tuple=True)[0]
girl_indices = (input_ids == girl_token_id).nonzero(as_tuple=True)[0]
# 准备 cross_attention_kwargs
def attention_control(attention_probs, adapter_name):
# 根据 adapter_name 和令牌索引控制注意力
print("attention_control", adapter_name)
if adapter_name == "boy_asia_05":
# 对女孩的令牌注意力设为零
attention_probs[:, :, :, girl_indices] = 0
elif adapter_name == "girl_asia_04":
# 对男孩的令牌注意力设为零
attention_probs[:, :, :, boy_indices] = 0
return attention_probs
joint_attention_kwargs = {"attention_control": attention_control}
generator = torch.Generator(device="cuda").manual_seed(seed)
with calculateDuration("Generating image"):
# Generate image
generate_image = pipe(
prompt=prompt,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs=joint_attention_kwargs
).images[0]
progress(99, "Generate success!")
return generate_image
# 在 Transformer 中,自定义注意力处理器
class CustomAttentionProcessor(torch.nn.Module):
def __init__(self, attention_control, adapter_name):
super().__init__()
self.attention_control = attention_control
self.adapter_name = adapter_name
def forward(self, attention_probs):
# 调用自定义的注意力控制函数
attention_probs = self.attention_control(attention_probs, self.adapter_name)
return attention_probs
def run_lora(prompt, cfg_scale, steps, lora_strings, randomize_seed, seed, width, height, lora_scale, upload_to_r2, account_id, access_key, secret_key, bucket, progress=gr.Progress(track_tqdm=True)):
# Load LoRA weights
if lora_strings:
with calculateDuration(f"Loading LoRA weights for {lora_strings}"):
pipe.unload_lora_weights()
lora_array = lora_strings.split(',')
adapter_names = []
for lora_string in lora_array:
parts = lora_string.split(':')
if len(parts) == 3:
lora_repo, weights, adapter_name = parts
# 调用 pipe.load_lora_weights() 方法加载权重
pipe.load_lora_weights(lora_repo, weight_name=weights, adapter_name=adapter_name)
adapter_names.append(adapter_name)
else:
print(f"Invalid format for lora_string: {lora_string}")
adapter_weights = [lora_scale] * len(adapter_names)
# 调用 pipeline.set_adapters 方法设置 adapter 和对应权重
pipe.set_adapters(adapter_names, adapter_weights=adapter_weights)
# Set random seed for reproducibility
if randomize_seed:
seed = random.randint(0, MAX_SEED)
final_image = generate_image(prompt, steps, seed, cfg_scale, width, height, progress)
if upload_to_r2:
with calculateDuration("upload r2"):
url = upload_image_to_r2(final_image, account_id, access_key, secret_key, bucket)
result = {"status": "success", "url": url}
else:
result = {"status": "success", "message": "Image generated but not uploaded"}
progress(100, "Completed!")
yield final_image, seed, json.dumps(result)
css="""
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("Flux with lora")
with gr.Row():
with gr.Column():
prompt = gr.Text(label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False)
lora_strings = gr.Text( label="lora_strings", max_lines=1, placeholder="Enter a lora strings", visible=True)
run_button = gr.Button("Run", scale=0)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=0.5)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
upload_to_r2 = gr.Checkbox(label="Upload to R2", value=False)
account_id = gr.Textbox(label="Account Id", placeholder="Enter R2 account id")
access_key = gr.Textbox(label="Access Key", placeholder="Enter R2 access key here")
secret_key = gr.Textbox(label="Secret Key", placeholder="Enter R2 secret key here")
bucket = gr.Textbox(label="Bucket Name", placeholder="Enter R2 bucket name here")
with gr.Column():
result = gr.Image(label="Result", show_label=False)
json_text = gr.Text()
gr.on(
triggers=[run_button.click, prompt.submit],
fn = run_lora,
inputs = [prompt, cfg_scale, steps, lora_strings, randomize_seed, seed, width, height, lora_scale, upload_to_r2, account_id, access_key, secret_key, bucket],
outputs=[result, seed, json_text]
)
demo.queue().launch() |