File size: 7,144 Bytes
6373ff8
ccc80c2
 
 
6373ff8
ccc80c2
 
6373ff8
 
 
 
3fc0dd0
6373ff8
 
 
 
f6c2def
 
8385a65
 
a9da525
 
 
6373ff8
3fc0dd0
 
 
6373ff8
 
 
ccc80c2
6373ff8
a9da525
 
 
 
 
 
 
 
 
 
9ecc297
a9da525
 
 
6373ff8
ccc80c2
6373ff8
 
 
ccc80c2
6373ff8
 
 
 
 
 
 
 
 
 
 
 
 
f6c2def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e4bb4a
a9da525
6373ff8
 
 
 
9e4bb4a
6373ff8
 
 
 
 
 
7e0a1d6
9ecc297
 
 
9e4bb4a
6373ff8
 
a9da525
ccc80c2
6373ff8
a9da525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6373ff8
9e4bb4a
 
6373ff8
a9da525
f6c2def
 
4ba7094
 
 
f6c2def
 
 
9ecc297
 
4ba7094
ccc80c2
 
 
 
 
 
 
 
 
 
6222acc
 
ccc80c2
6373ff8
6222acc
a9da525
6222acc
 
 
 
 
 
 
 
6373ff8
6222acc
 
 
 
 
 
 
 
f6c2def
 
 
 
 
 
 
6222acc
 
f6c2def
6373ff8
ccc80c2
 
6373ff8
a9da525
4ba7094
ccc80c2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import gradio as gr
import numpy as np
import random
import spaces
from diffusers import DiffusionPipeline
import torch
import json
import logging
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from huggingface_hub import login
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import copy
import random
import time
import boto3
from io import BytesIO
from datetime import datetime

from diffusers import UNet2DConditionModel



HF_TOKEN = os.environ.get("HF_TOKEN")

login(token=HF_TOKEN)

# init
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"

# unet = UNet2DConditionModel.from_pretrained(
#     base_model,
#     torch_dtype=torch.float16,
#     use_safetensors=True,
#     variant="fp16",
#     subfolder="unet",
# ).to("cuda")


pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)



MAX_SEED = 2**32-1

class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name

    def __enter__(self):
        self.start_time = time.time()
        return self
    
    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
        else:
            print(f"Elapsed time: {self.elapsed_time:.6f} seconds")


def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name):
    print("upload_image_to_r2", account_id, access_key, secret_key, bucket_name)
    connectionUrl = f"https://{account_id}.r2.cloudflarestorage.com"

    s3 = boto3.client(
        's3',
        endpoint_url=connectionUrl,
        region_name='auto',
        aws_access_key_id=access_key,
        aws_secret_access_key=secret_key
    )

    current_time = datetime.now().strftime("%Y/%m/%d/%H%M%S")
    image_file = f"generated_images/{current_time}_{random.randint(0, MAX_SEED)}.png"
    buffer = BytesIO()
    image.save(buffer, "PNG")
    buffer.seek(0)
    s3.upload_fileobj(buffer, bucket_name, image_file)
    print("upload finish", image_file)
    return image_file


@spaces.GPU
def generate_image(prompt, steps, seed, cfg_scale, width, height, progress):
    pipe.to("cuda")
    generator = torch.Generator(device="cuda").manual_seed(seed)
    with calculateDuration("Generating image"):
        # Generate image
        generate_image = pipe(
            prompt=prompt,
            num_inference_steps=steps,
            guidance_scale=cfg_scale,
            width=width,
            height=height,
            generator=generator,
            joint_attention_kwargs={"scale": 1}
        ).images[0]
        
    progress(99, "Generate success!")
    return generate_image


def run_lora(prompt, cfg_scale, steps, lora_strings, randomize_seed, seed, width, height, lora_scale, upload_to_r2, account_id, access_key, secret_key, bucket, progress=gr.Progress(track_tqdm=True)):
    

    # Load LoRA weights
    if lora_strings:
        with calculateDuration(f"Loading LoRA weights for {lora_strings}"):
            pipe.unload_lora_weights()
            lora_array = lora_strings.split(',')
            adapter_names = []
            for lora_string in lora_array:
                parts = lora_string.split(':')
                if len(parts) == 3:
                    lora_repo, weights, adapter_name = parts
                    # 调用 pipe.load_lora_weights() 方法加载权重
                    pipe.load_lora_weights(lora_repo, weight_name=weights, adapter_name=adapter_name)
                    adapter_names.append(adapter_name)
                else:
                    print(f"Invalid format for lora_string: {lora_string}")
            
            adapter_weights = [lora_scale] * len(adapter_names)
            # 调用 pipeline.set_adapters 方法设置 adapter 和对应权重
            pipe.set_adapters(adapter_names, adapter_weights=adapter_weights)
        
    # Set random seed for reproducibility
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    final_image = generate_image(prompt, steps, seed, cfg_scale, width, height, progress)
    
    if upload_to_r2:
        with calculateDuration("upload r2"):
            url = upload_image_to_r2(final_image, account_id, access_key, secret_key, bucket)
            result = {"status": "success", "url": url}
    else:
        result = {"status": "success", "message": "Image generated but not uploaded"}
    
    progress(100, "Completed!")

    yield final_image, seed, json.dumps(result)


css="""
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown("Flux with lora")
    with gr.Row():
        
        with gr.Column():
            prompt = gr.Text(label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False)
            lora_strings = gr.Text( label="lora_strings", max_lines=1, placeholder="Enter a lora strings", visible=True)        
            run_button = gr.Button("Run", scale=0)

            with gr.Accordion("Advanced Settings", open=False):

                with gr.Row():
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                    lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95)

                with gr.Row():
                    width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
                    height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)

                with gr.Row():
                    cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) 

                upload_to_r2 = gr.Checkbox(label="Upload to R2", value=False)
                account_id = gr.Textbox(label="Account Id", placeholder="Enter R2 account id")
                access_key = gr.Textbox(label="Access Key", placeholder="Enter R2 access key here")
                secret_key = gr.Textbox(label="Secret Key", placeholder="Enter R2 secret key here")
                bucket = gr.Textbox(label="Bucket Name", placeholder="Enter R2 bucket name here")
        

        with gr.Column():
            result = gr.Image(label="Result", show_label=False)
            json_text = gr.Text()

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = run_lora,
        inputs = [prompt, cfg_scale, steps, lora_strings, randomize_seed, seed, width, height, lora_scale, upload_to_r2, account_id, access_key, secret_key, bucket],
        outputs=[result, seed, json_text]
    )

demo.queue().launch()