File size: 19,839 Bytes
6373ff8
ccc80c2
 
 
8d7d2d7
ccc80c2
6373ff8
 
f93e467
3fc0dd0
6373ff8
8385a65
f93e467
8d7d2d7
 
 
 
f93e467
 
 
3fc0dd0
 
8d7d2d7
 
6373ff8
f93e467
 
ccc80c2
f93e467
a9da525
f93e467
9ecc297
a9da525
f93e467
ccc80c2
6373ff8
 
 
ccc80c2
6373ff8
 
 
 
 
 
 
 
 
 
 
 
f93e467
 
 
 
 
 
 
 
 
 
 
 
6373ff8
f93e467
 
 
 
 
 
 
 
 
 
 
f6c2def
f93e467
 
 
 
 
 
 
 
 
 
 
f6c2def
f93e467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53d0f2f
f93e467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d7d2d7
 
 
f93e467
8d7d2d7
f93e467
 
8d7d2d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f93e467
 
 
8d7d2d7
 
53d0f2f
f93e467
 
8d7d2d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f93e467
 
8d7d2d7
 
 
 
f93e467
 
 
8d7d2d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f93e467
8d7d2d7
 
f93e467
8d7d2d7
 
 
 
f93e467
8d7d2d7
 
f93e467
8d7d2d7
 
 
 
f93e467
8d7d2d7
 
 
 
 
 
 
f93e467
 
 
8d7d2d7
f93e467
8d7d2d7
 
 
 
 
 
 
 
 
f93e467
 
8d7d2d7
 
 
 
f93e467
6373ff8
 
f93e467
8d7d2d7
 
6373ff8
 
 
 
 
9ecc297
f93e467
9ecc297
f93e467
53d0f2f
f93e467
8d7d2d7
 
f93e467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccc80c2
a9da525
f93e467
 
 
 
 
 
 
 
 
 
 
 
8d7d2d7
 
f93e467
 
 
 
 
 
 
 
 
 
6373ff8
9e4bb4a
f93e467
 
f6c2def
f93e467
 
 
8d7d2d7
 
 
 
f93e467
8d7d2d7
 
f93e467
8d7d2d7
 
 
 
 
 
f93e467
8d7d2d7
 
 
 
f93e467
8d7d2d7
 
f93e467
 
 
 
 
 
 
 
 
 
 
 
 
 
8d7d2d7
f93e467
 
8d7d2d7
f93e467
 
 
9ecc297
f93e467
ccc80c2
f93e467
ccc80c2
f93e467
ccc80c2
 
 
 
 
 
 
 
f93e467
6222acc
ccc80c2
6373ff8
8d7d2d7
f93e467
 
 
 
 
6222acc
 
 
 
 
 
 
5f10541
6373ff8
6222acc
f93e467
 
6222acc
 
f93e467
6222acc
 
f6c2def
 
 
 
 
 
 
6222acc
 
f93e467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccc80c2
 
f93e467
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
import os
import gradio as gr
import numpy as np
import random
import spaces
import torch
import json
import logging
from diffusers import DiffusionPipeline
from huggingface_hub import login
import time
from datetime import datetime
from io import BytesIO
# from diffusers.models.attention_processor import AttentionProcessor
from diffusers.models.attention_processor import AttnProcessor2_0
import torch.nn.functional as F

import re
import json
# 登录 Hugging Face Hub
HF_TOKEN = os.environ.get("HF_TOKEN")
login(token=HF_TOKEN)
import diffusers
print(diffusers.__version__)

# 初始化
dtype = torch.float16  # 您可以根据需要调整数据类型
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"  # 替换为您的模型

# 加载管道
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)

MAX_SEED = 2**32 - 1

class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name

    def __enter__(self):
        self.start_time = time.time()
        return self
    
    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
        else:
            print(f"Elapsed time: {self.elapsed_time:.6f} seconds")

# 定义位置、偏移和区域的映射
valid_locations = {  # x, y in 90*90
    'in the center': (45, 45),
    'on the left': (15, 45),
    'on the right': (75, 45),
    'on the top': (45, 15),
    'on the bottom': (45, 75),
    'on the top-left': (15, 15),
    'on the top-right': (75, 15),
    'on the bottom-left': (15, 75),
    'on the bottom-right': (75, 75)
}

valid_offsets = {  # x, y in 90*90
    'no offset': (0, 0),
    'slightly to the left': (-10, 0),
    'slightly to the right': (10, 0),
    'slightly to the upper': (0, -10),
    'slightly to the lower': (0, 10),
    'slightly to the upper-left': (-10, -10),
    'slightly to the upper-right': (10, -10),
    'slightly to the lower-left': (-10, 10),
    'slightly to the lower-right': (10, 10)
}

valid_areas = {  # w, h in 90*90
    "a small square area": (50, 50),
    "a small vertical area": (40, 60),
    "a small horizontal area": (60, 40),
    "a medium-sized square area": (60, 60),
    "a medium-sized vertical area": (50, 80),
    "a medium-sized horizontal area": (80, 50),
    "a large square area": (70, 70),
    "a large vertical area": (60, 90),
    "a large horizontal area": (90, 60)
}

# 解析角色位置的函数
def parse_character_position(character_position):
    # 定义正则表达式模式
    location_pattern = '|'.join(re.escape(key) for key in valid_locations.keys())
    offset_pattern = '|'.join(re.escape(key) for key in valid_offsets.keys())
    area_pattern = '|'.join(re.escape(key) for key in valid_areas.keys())

    # 提取位置
    location_match = re.search(location_pattern, character_position, re.IGNORECASE)
    location = location_match.group(0) if location_match else 'in the center'

    # 提取偏移
    offset_match = re.search(offset_pattern, character_position, re.IGNORECASE)
    offset = offset_match.group(0) if offset_match else 'no offset'

    # 提取区域
    area_match = re.search(area_pattern, character_position, re.IGNORECASE)
    area = area_match.group(0) if area_match else 'a medium-sized square area'

    return {
        'location': location,
        'offset': offset,
        'area': area
}

# 创建掩码的函数
def create_attention_mask(image_width, image_height, location, offset, area):
    # 图像在生成时通常会被缩放为 90x90,因此先定义一个基础尺寸
    base_size = 90

    # 获取位置坐标
    loc_x, loc_y = valid_locations.get(location, (45, 45))
    # 获取偏移量
    offset_x, offset_y = valid_offsets.get(offset, (0, 0))
    # 获取区域大小
    area_width, area_height = valid_areas.get(area, (60, 60))

    # 计算最终位置
    final_x = loc_x + offset_x
    final_y = loc_y + offset_y

    # 将坐标和尺寸映射到实际图像尺寸
    scale_x = image_width / base_size
    scale_y = image_height / base_size

    center_x = final_x * scale_x
    center_y = final_y * scale_y
    width = area_width * scale_x
    height = area_height * scale_y

    # 计算左上角和右下角坐标
    x_start = int(max(center_x - width / 2, 0))
    y_start = int(max(center_y - height / 2, 0))
    x_end = int(min(center_x + width / 2, image_width))
    y_end = int(min(center_y + height / 2, image_height))

    # 创建掩码
    mask = torch.zeros((image_height, image_width), dtype=torch.float32, device="cuda")
    mask[y_start:y_end, x_start:x_end] = 1.0

    # 展平成一维
    mask_flat = mask.view(-1)  # 形状为 (image_height * image_width,)
    return mask_flat

# 自定义注意力处理器

class CustomCrossAttentionProcessor(AttnProcessor2_0):
    def __init__(self, masks, adapter_names):
        super().__init__()
        self.masks = masks  # 列表,包含每个角色的掩码 (shape: [key_length])
        self.adapter_names = adapter_names  # 列表,包含每个角色的 LoRA 适配器名称

    def __call__(
        self,
        attn,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        temb=None,
        **kwargs,
    ):
        """
        自定义的注意力处理器,用于在注意力计算中应用角色掩码。

        参数:
            attn: 注意力模块实例。
            hidden_states: 输入的隐藏状态 (query)。
            encoder_hidden_states: 编码器的隐藏状态 (key/value)。
            attention_mask: 注意力掩码。
            temb: 时间嵌入(可能不需要)。
            **kwargs: 其他参数。

        返回:
            处理后的隐藏状态。
        """
        # 获取当前的 adapter_name
        adapter_name = getattr(attn, 'adapter_name', None)
        if adapter_name is None or adapter_name not in self.adapter_names:
            # 如果没有 adapter_name,或者不在我们的列表中,直接执行父类的 __call__ 方法
            return super().__call__(attn, hidden_states, encoder_hidden_states, attention_mask, temb, **kwargs)
        
        # 查找 adapter_name 对应的索引
        idx = self.adapter_names.index(adapter_name)
        mask = self.masks[idx]  # 获取对应的掩码 (shape: [key_length])

        # 以下是 AttnProcessor2_0 的实现,我们在适当的位置加入自定义的掩码逻辑

        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
        else:
            batch_size, sequence_length, _ = hidden_states.shape

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        else:
            # 如果有 encoder_hidden_states,获取其形状
            encoder_batch_size, key_length, _ = encoder_hidden_states.shape

        if attention_mask is not None:
            # 处理 attention_mask,如果需要的话
            attention_mask = attn.prepare_attention_mask(attention_mask, key_length, batch_size)
            # attention_mask 的形状应为 (batch_size, attn.heads, query_length, key_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
        else:
            # 如果没有 attention_mask,我们创建一个全 0 的掩码
            attention_mask = torch.zeros(
                batch_size, attn.heads, 1, key_length, device=hidden_states.device, dtype=hidden_states.dtype
            )

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # 计算原始的注意力得分
        # 我们需要在计算注意力得分前应用掩码
        # 但由于 PyTorch 的 scaled_dot_product_attention 接受 attention_mask 参数,我们需要调整我们的掩码

        # 创建自定义的 attention_mask
        # mask 的形状为 [key_length],需要调整为 (batch_size, attn.heads, 1, key_length)
        custom_attention_mask = mask.view(1, 1, 1, -1).to(hidden_states.device, dtype=hidden_states.dtype)
        # 将有效位置设为 0,被掩蔽的位置设为 -1e9(对于 float16,使用 -65504)
        mask_value = -65504.0 if hidden_states.dtype == torch.float16 else -1e9
        custom_attention_mask = (1.0 - custom_attention_mask) * mask_value  # 有效位置为 0,无效位置为 -1e9

        # 将自定义掩码添加到 attention_mask
        attention_mask = attention_mask + custom_attention_mask

        # 计算注意力
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


# 替换注意力处理器的函数
def replace_attention_processors(pipe, masks, adapter_names):
    custom_processor = CustomCrossAttentionProcessor(masks, adapter_names)
    for name, module in pipe.transformer.named_modules():
        if hasattr(module, 'attn'):
            module.attn.adapter_name = getattr(module, 'adapter_name', None)
            module.attn.processor = custom_processor
        if hasattr(module, 'cross_attn'):
            module.cross_attn.adapter_name = getattr(module, 'adapter_name', None)
            module.cross_attn.processor = custom_processor

# 生成图像的函数

def generate_image_with_embeddings(prompt_embeds, pooled_prompt_embeds, steps, seed, cfg_scale, width, height, progress):
    pipe.to(device)
    generator = torch.Generator(device=device).manual_seed(seed)

    with calculateDuration("Generating image"):
        # Generate image
        generated_image = pipe(
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            num_inference_steps=steps,
            guidance_scale=cfg_scale,
            width=width,
            height=height,
            generator=generator,
        ).images[0]
    
    progress(99, "Generate success!")
    return generated_image

# 主函数
@spaces.GPU
@torch.inference_mode()
def run_lora(prompt_bg, character_prompts_json, character_positions_json, lora_strings_json, prompt_details, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, upload_to_r2, account_id, access_key, secret_key, bucket, progress=gr.Progress(track_tqdm=True)):
    
    # 解析角色提示词、位置和 LoRA 字符串
    try:
        character_prompts = json.loads(character_prompts_json)
        character_positions = json.loads(character_positions_json)
        lora_strings = json.loads(lora_strings_json)
    except json.JSONDecodeError as e:
        raise ValueError(f"Invalid JSON input: {e}")
    
    # 确保提示词、位置和 LoRA 字符串的数量一致
    if len(character_prompts) != len(character_positions) or len(character_prompts) != len(lora_strings):
        raise ValueError("The number of character prompts, positions, and LoRA strings must be the same.")
    
    # 角色的数量
    num_characters = len(character_prompts)
    
    # Load LoRA weights
    with calculateDuration("Loading LoRA weights"):
        pipe.unload_lora_weights()
        adapter_names = []
        for lora_info in lora_strings:
            lora_repo = lora_info.get("repo")
            weights = lora_info.get("weights")
            adapter_name = lora_info.get("adapter_name")
            if lora_repo and weights and adapter_name:
                # 调用 pipe.load_lora_weights() 方法加载权重
                pipe.load_lora_weights(lora_repo, weight_name=weights, adapter_name=adapter_name)
                adapter_names.append(adapter_name)
                # 将 adapter_name 设置为模型的属性
                setattr(pipe.transformer, 'adapter_name', adapter_name)

            else:
                raise ValueError("Invalid LoRA string format. Each item must have 'repo', 'weights', and 'adapter_name' keys.")
        adapter_weights = [lora_scale] * len(adapter_names)
        # 调用 pipeline.set_adapters 方法设置 adapter 和对应权重
        pipe.set_adapters(adapter_names, adapter_weights=adapter_weights)
    
    # 确保 adapter_names 的数量与角色数量匹配
    if len(adapter_names) != num_characters:
        raise ValueError("The number of LoRA adapters must match the number of characters.")
    
    # Set random seed for reproducibility
    if randomize_seed:
        with calculateDuration("Set random seed"):
            seed = random.randint(0, MAX_SEED)
    
    # 编码提示词
    with calculateDuration("Encoding prompts"):
        # 编码背景提示词
        bg_text_input = pipe.tokenizer(prompt_bg, return_tensors="pt").to(device)
        bg_prompt_embeds = pipe.text_encoder_2(bg_text_input.input_ids.to(device))[0]
        bg_pooled_embeds = pipe.text_encoder(bg_text_input.input_ids.to(device)).pooler_output

        # 编码角色提示词
        character_prompt_embeds = []
        character_pooled_embeds = []
        for prompt in character_prompts:
            char_text_input = pipe.tokenizer(prompt, return_tensors="pt").to(device)
            char_prompt_embeds = pipe.text_encoder_2(char_text_input.input_ids.to(device))[0]
            char_pooled_embeds = pipe.text_encoder(char_text_input.input_ids.to(device)).pooler_output
            character_prompt_embeds.append(char_prompt_embeds)
            character_pooled_embeds.append(char_pooled_embeds)

        # 编码互动细节提示词
        details_text_input = pipe.tokenizer(prompt_details, return_tensors="pt").to(device)
        details_prompt_embeds = pipe.text_encoder_2(details_text_input.input_ids.to(device))[0]
        details_pooled_embeds = pipe.text_encoder(details_text_input.input_ids.to(device)).pooler_output

        # 合并背景和互动细节的嵌入
        prompt_embeds = torch.cat([bg_prompt_embeds, details_prompt_embeds], dim=1)
        pooled_prompt_embeds = torch.cat([bg_pooled_embeds, details_pooled_embeds], dim=1)
    
    # 解析角色位置
    character_infos = []
    for position_str in character_positions:
        info = parse_character_position(position_str)
        character_infos.append(info)
    
    # 创建角色的掩码
    masks = []
    for info in character_infos:
        mask = create_attention_mask(width, height, info['location'], info['offset'], info['area'])
        masks.append(mask)
    
    # 替换注意力处理器
    replace_attention_processors(pipe, masks, adapter_names)
    
    # Generate image
    final_image = generate_image_with_embeddings(prompt_embeddings, pooled_prompt_embeds, steps, seed, cfg_scale, width, height, progress)
    
    # 您可以在此处添加上传图片的代码
    result = {"status": "success", "message": "Image generated"}

    progress(100, "Completed!")

    return final_image, seed, json.dumps(result)

# Gradio 界面
css="""
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown("Flux with LoRA")
    with gr.Row():
        
        with gr.Column():

            prompt_bg = gr.Text(label="Background Prompt", placeholder="Enter background/scene prompt", lines=2)
            character_prompts = gr.Text(label="Character Prompts (JSON List)", placeholder='["Character 1 prompt", "Character 2 prompt"]', lines=5)
            character_positions = gr.Text(label="Character Positions (JSON List)", placeholder='["Character 1 position", "Character 2 position"]', lines=5)
            lora_strings_json = gr.Text(label="LoRA Strings (JSON List)", placeholder='[{"repo": "lora_repo1", "weights": "weights1", "adapter_name": "adapter_name1"}, {"repo": "lora_repo2", "weights": "weights2", "adapter_name": "adapter_name2"}]', lines=5)
            prompt_details = gr.Text(label="Interaction Details", placeholder="Enter interaction details between characters", lines=2)
            run_button = gr.Button("Run", scale=0)

            with gr.Accordion("Advanced Settings", open=False):

                with gr.Row():
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                    lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=0.5)

                with gr.Row():
                    width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=512)
                    height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=512)

                with gr.Row():
                    cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=7.5)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) 

                upload_to_r2 = gr.Checkbox(label="Upload to R2", value=False)
                account_id = gr.Textbox(label="Account Id", placeholder="Enter R2 account id")
                access_key = gr.Textbox(label="Access Key", placeholder="Enter R2 access key here")
                secret_key = gr.Textbox(label="Secret Key", placeholder="Enter R2 secret key here")
                bucket = gr.Textbox(label="Bucket Name", placeholder="Enter R2 bucket name here")
        

        with gr.Column():
            result = gr.Image(label="Result", show_label=False)
            seed_output = gr.Text(label="Seed")
            json_text = gr.Text(label="Result JSON")

    inputs = [
        prompt_bg,
        character_prompts,
        character_positions,
        lora_strings_json,
        prompt_details,
        cfg_scale,
        steps,
        randomize_seed,
        seed,
        width,
        height,
        lora_scale,
        upload_to_r2,
        account_id,
        access_key,
        secret_key,
        bucket
    ]

    outputs = [result, seed_output, json_text]

    run_button.click(
        fn=run_lora,
        inputs=inputs,
        outputs=outputs
    )

demo.queue().launch()