Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,165 Bytes
6373ff8 ccc80c2 8d7d2d7 ccc80c2 6373ff8 b9ea7a6 3fc0dd0 b9ea7a6 6373ff8 8385a65 f93e467 8d7d2d7 8d65475 2c50a6c f93e467 2c50a6c 16c2491 3fc0dd0 8d7d2d7 6373ff8 16c2491 df50fe7 ccc80c2 16c2491 a9da525 16c2491 b9ea7a6 9ecc297 a9da525 b9ea7a6 f93e467 ccc80c2 6373ff8 ccc80c2 6373ff8 422bc49 6373ff8 422bc49 6373ff8 422bc49 16c2491 b9ea7a6 4c93f86 1241278 ed27447 b5c1016 4c93f86 9764d93 bc19462 b9ea7a6 bc19462 b9ea7a6 bc19462 b9ea7a6 bc19462 9764d93 f93e467 53d0f2f 2c50a6c b093e55 ccc80c2 b093e55 2c50a6c 8d7d2d7 b9ea7a6 b5c1016 b8cbb2a b9ea7a6 6373ff8 9e4bb4a f93e467 1241278 c0d646a cdeb4dc c0d646a cdeb4dc b9ea7a6 cdeb4dc b9ea7a6 cdeb4dc 4c93f86 f93e467 b5c1016 16c2491 9764d93 b9ea7a6 b5c1016 b8cbb2a 9764d93 16c2491 2c50a6c b093e55 2c50a6c 16c2491 b5c1016 b8cbb2a f93e467 ccc80c2 f93e467 ccc80c2 16c2491 ccc80c2 16c2491 6222acc ccc80c2 6373ff8 8d7d2d7 b5c1016 b9ea7a6 6222acc 6373ff8 6222acc 422bc49 6222acc b9ea7a6 422bc49 6222acc f6c2def 6222acc f93e467 eb74c8f f93e467 2c50a6c b9ea7a6 f93e467 b9ea7a6 f93e467 ccc80c2 f93e467 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import os
import gradio as gr
import numpy as np
import random
import spaces
import torch
import json
import logging
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
from huggingface_hub import login
from diffusers.utils import load_image
import time
from datetime import datetime
from io import BytesIO
import torch.nn.functional as F
from PIL import Image, ImageFilter
import time
import boto3
from io import BytesIO
import re
import json
# Login Hugging Face Hub
HF_TOKEN = os.environ.get("HF_TOKEN")
login(token=HF_TOKEN)
import diffusers
# init
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"
# load pipe
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)
# img2img model
img2img = AutoPipelineForImage2Image.from_pretrained(base_model,
vae=good_vae,
transformer=pipe.transformer,
text_encoder=pipe.text_encoder,
tokenizer=pipe.tokenizer,
text_encoder_2=pipe.text_encoder_2,
tokenizer_2=pipe.tokenizer_2,
torch_dtype=dtype
)
MAX_SEED = 2**32 - 1
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
self.start_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.start_time))
print(f"Activity: {self.activity_name}, Start time: {self.start_time_formatted}")
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
self.end_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.end_time))
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
@spaces.GPU(duration=120)
def generate_image(orginal_image, prompt, adapter_names, steps, seed, image_strength, cfg_scale, width, height, progress):
gr.Info("Start to generate images ...")
with calculateDuration(f"Make a new generator:{seed}"):
pipe.to(device)
generator = torch.Generator(device=device).manual_seed(seed)
with calculateDuration("Generating image"):
# Generate image
joint_attention_kwargs = {"scale": 1}
if len(adapter_names) == 0:
joint_attention_kwargs = None
pipe.unload_lora_weights()
if orginal_image:
generated_image = img2img(
prompt=prompt,
image=orginal_image,
strength=image_strength,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs=joint_attention_kwargs
).images[0]
else:
generated_image = pipe(
prompt=prompt,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
max_sequence_length=512,
generator=generator,
joint_attention_kwargs=joint_attention_kwargs
).images[0]
if len(adapter_names) > 0:
pipe.unload_lora_weights()
progress(99, "Generate image success!")
return generated_image
def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name):
with calculateDuration("Upload images"):
print("upload_image_to_r2", account_id, access_key, secret_key, bucket_name)
connectionUrl = f"https://{account_id}.r2.cloudflarestorage.com"
s3 = boto3.client(
's3',
endpoint_url=connectionUrl,
region_name='auto',
aws_access_key_id=access_key,
aws_secret_access_key=secret_key
)
current_time = datetime.now().strftime("%Y/%m/%d/%H%M%S")
image_file = f"generated_images/{current_time}_{random.randint(0, MAX_SEED)}.png"
buffer = BytesIO()
image.save(buffer, "PNG")
buffer.seek(0)
s3.upload_fileobj(buffer, bucket_name, image_file)
print("upload finish", image_file)
# start to generate thumbnail
thumbnail = image.copy()
thumbnail_width = 256
aspect_ratio = image.height / image.width
thumbnail_height = int(thumbnail_width * aspect_ratio)
thumbnail = thumbnail.resize((thumbnail_width, thumbnail_height), Image.LANCZOS)
# Generate the thumbnail image filename
thumbnail_file = image_file.replace(".png", "_thumbnail.png")
# Save thumbnail to buffer and upload
thumbnail_buffer = BytesIO()
thumbnail.save(thumbnail_buffer, "PNG")
thumbnail_buffer.seek(0)
s3.upload_fileobj(thumbnail_buffer, bucket_name, thumbnail_file)
print("upload thumbnail finish", thumbnail_file)
return image_file
def run_lora(prompt, image_url, lora_strings_json, image_strength, cfg_scale, steps, randomize_seed, seed, width, height, upload_to_r2, account_id, access_key, secret_key, bucket, progress=gr.Progress(track_tqdm=True)):
print("run_lora", prompt, lora_strings_json, cfg_scale, steps, width, height)
gr.Info("Starting process")
img2img_model = False
orginal_image = None
if image_url:
orginal_image = load_image(image_url)
img2img_model = True
# Set random seed for reproducibility
if randomize_seed:
with calculateDuration("Set random seed"):
seed = random.randint(0, MAX_SEED)
# Load LoRA weights
gr.Info("Start to load LoRA ...")
with calculateDuration("Unloading LoRA"):
pipe.unload_lora_weights()
img2img.unload_lora_weights()
lora_configs = None
adapter_names = []
if lora_strings_json:
try:
lora_configs = json.loads(lora_strings_json)
except:
gr.Warning("Parse lora config json failed")
print("parse lora config json failed")
if lora_configs:
with calculateDuration("Loading LoRA weights"):
adapter_weights = []
for lora_info in lora_configs:
lora_repo = lora_info.get("repo")
weights = lora_info.get("weights")
adapter_name = lora_info.get("adapter_name")
adapter_weight = lora_info.get("adapter_weight")
if lora_repo and weights and adapter_name:
retry_count = 3
for attempt in range(retry_count):
try:
if img2img_model:
img2img.load_lora_weights(lora_repo, weight_name=weights, adapter_name=adapter_name)
else:
pipe.load_lora_weights(lora_repo, weight_name=weights, adapter_name=adapter_name)
adapter_names.append(adapter_name)
adapter_weights.append(adapter_weight)
break # Load successful, exit retry loop
except ValueError as e:
print(f"Attempt {attempt+1}/{retry_count} failed to load LoRA adapter: {e}")
if attempt == retry_count - 1:
print(f"Error loading LoRA adapter: {adapter_name} after {retry_count} attempts")
else:
time.sleep(1) # Wait before retrying
# set lora weights
if len(adapter_names) > 0:
if img2img_model:
img2img.set_adapters(adapter_names, adapter_weights=adapter_weights)
else:
pipe.set_adapters(adapter_names, adapter_weights=adapter_weights)
# Generate image
error_message = ""
try:
print("Start applying for zeroGPU resources")
final_image = generate_image(orginal_image, prompt, adapter_names, steps, seed, image_strength, cfg_scale, width, height, progress)
except Exception as e:
error_message = str(e)
gr.Error(error_message)
print("Run error", e)
final_image = None
if final_image:
if upload_to_r2:
url = upload_image_to_r2(final_image, account_id, access_key, secret_key, bucket)
result = {"status": "success", "message": "upload image success", "url": url}
else:
result = {"status": "success", "message": "Image generated but not uploaded"}
else:
result = {"status": "failed", "message": error_message}
gr.Info("Completed!")
progress(100, "Completed!")
return final_image, seed, json.dumps(result)
# Gradio interface
css="""
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("flux-dev-multi-lora")
with gr.Row():
with gr.Column():
prompt = gr.Text(label="Prompt", placeholder="Enter prompt", lines=10)
lora_strings_json = gr.Text(label="LoRA Configs (JSON List String)", placeholder='[{"repo": "lora_repo1", "weights": "weights1", "adapter_name": "adapter_name1", "adapter_weight": 1}, {"repo": "lora_repo2", "weights": "weights2", "adapter_name": "adapter_name2", "adapter_weight": 1}]', lines=5)
image_url = gr.Text(label="Image url", placeholder="Enter image url to enable image to image model", lines=1)
run_button = gr.Button("Run", scale=0)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
upload_to_r2 = gr.Checkbox(label="Upload to R2", value=False)
account_id = gr.Textbox(label="Account Id", placeholder="Enter R2 account id")
access_key = gr.Textbox(label="Access Key", placeholder="Enter R2 access key here")
secret_key = gr.Textbox(label="Secret Key", placeholder="Enter R2 secret key here")
bucket = gr.Textbox(label="Bucket Name", placeholder="Enter R2 bucket name here")
with gr.Column():
result = gr.Image(label="Result", show_label=False)
seed_output = gr.Text(label="Seed")
json_text = gr.Text(label="Result JSON")
gr.Markdown("**Disclaimer:**")
gr.Markdown(
"This demo is only for research purpose. This space owner cannot be held responsible for the generation of NSFW (Not Safe For Work) content through the use of this demo. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards. This space owner provides the tools, but the responsibility for their use lies with the individual user."
)
inputs = [
prompt,
image_url,
lora_strings_json,
image_strength,
cfg_scale,
steps,
randomize_seed,
seed,
width,
height,
upload_to_r2,
account_id,
access_key,
secret_key,
bucket
]
outputs = [result, seed_output, json_text]
run_button.click(
fn=run_lora,
inputs=inputs,
outputs=outputs
)
demo.queue().launch()
|