jiuface's picture
update interface
6222acc
raw
history blame
5.47 kB
import os
import gradio as gr
import numpy as np
import random
import spaces
from diffusers import DiffusionPipeline
import torch
import json
import logging
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from huggingface_hub import login
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import copy
import random
import time
HF_TOKEN = os.environ.get("HF_TOKEN")
login(token=HF_TOKEN)
# init
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
MAX_SEED = 2**32-1
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
@spaces.GPU(duration=70)
def generate_image(prompt, steps, seed, cfg_scale, width, height, lora_scale, progress):
pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
with calculateDuration("Generating image"):
# Generate image
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
output_type="pil",
good_vae=good_vae,
):
yield img
def run_lora(prompt, cfg_scale, steps, lora_repo, lora_name, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
with calculateDuration("Unloading LoRA"):
pipe.unload_lora_weights()
# Load LoRA weights
with calculateDuration(f"Loading LoRA weights for {lora_repo} {lora_name}"):
pipe.load_lora_weights(lora_repo, weight_name=lora_name)
# Set random seed for reproducibility
with calculateDuration("Randomizing seed"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
image_generator = generate_image(prompt, steps, seed, cfg_scale, width, height, lora_scale, progress)
# Consume the generator to get the final image
final_image = None
step_counter = 0
for image in image_generator:
step_counter+=1
final_image = image
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
yield image, seed, gr.update(value=progress_bar, visible=True)
yield final_image, seed, gr.update(value=progress_bar, visible=False)
css="""
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("Flux with lora")
with gr.Row():
with gr.Column():
prompt = gr.Text(label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False)
lora_repo = gr.Text( label="Repo", max_lines=1, placeholder="Enter a lora repo", visible=True)
lora_name = gr.Text( label="Weights", max_lines=1, placeholder="Enter a lora weights",visible=True)
run_button = gr.Button("Run", scale=0)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
with gr.Column():
progress_bar = gr.Markdown(elem_id="progress",visible=False)
result = gr.Image(label="Result", show_label=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = run_lora,
inputs = [prompt, cfg_scale, steps, lora_repo, lora_name, randomize_seed, seed, width, height, lora_scale],
outputs=[result, seed, progress_bar]
)
demo.queue().launch()