Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
from diffusers import DiffusionPipeline | |
import torch | |
import json | |
import logging | |
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL | |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images | |
from huggingface_hub import login | |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download | |
import copy | |
import random | |
import time | |
import boto3 | |
from io import BytesIO | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
login(token=HF_TOKEN) | |
# init | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
base_model = "black-forest-labs/FLUX.1-dev" | |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) | |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device) | |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device) | |
MAX_SEED = 2**32-1 | |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) | |
class calculateDuration: | |
def __init__(self, activity_name=""): | |
self.activity_name = activity_name | |
def __enter__(self): | |
self.start_time = time.time() | |
return self | |
def __exit__(self, exc_type, exc_value, traceback): | |
self.end_time = time.time() | |
self.elapsed_time = self.end_time - self.start_time | |
if self.activity_name: | |
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") | |
else: | |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds") | |
def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name): | |
print("upload_image_to_r2", account_id, access_key, secret_key, bucket_name) | |
connectionUrl = f"https://{account_id}.r2.cloudflarestorage.com" | |
s3 = boto3.client( | |
's3', | |
endpoint_url=connectionUrl, | |
region_name='auto', | |
aws_access_key_id=access_key, | |
aws_secret_access_key=secret_key | |
) | |
current_time = datetime.now().strftime("%Y/%m/%d/%H%M%S") | |
image_file = f"generated_images/{current_time}_{random.randint(0, MAX_SEED)}.png" | |
buffer = BytesIO() | |
image.save(buffer, "PNG") | |
buffer.seek(0) | |
s3.upload_fileobj(buffer, bucket_name, image_file) | |
print("upload finish", image_file) | |
return image_file | |
def generate_image(prompt, steps, seed, cfg_scale, width, height, lora_scale, progress): | |
pipe.to("cuda") | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
with calculateDuration("Generating image"): | |
# Generate image | |
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( | |
prompt=prompt, | |
num_inference_steps=steps, | |
guidance_scale=cfg_scale, | |
width=width, | |
height=height, | |
generator=generator, | |
joint_attention_kwargs={"scale": lora_scale}, | |
output_type="pil", | |
good_vae=good_vae, | |
): | |
yield img | |
def run_lora(prompt, cfg_scale, steps, lora_repo, lora_name, randomize_seed, seed, width, height, lora_scale, upload_to_r2, account_id, access_key, secret_key, bucket, progress=gr.Progress(track_tqdm=True)): | |
with calculateDuration("Unloading LoRA"): | |
pipe.unload_lora_weights() | |
# Load LoRA weights | |
with calculateDuration(f"Loading LoRA weights for {lora_repo} {lora_name}"): | |
pipe.load_lora_weights(lora_repo, weight_name=lora_name) | |
# Set random seed for reproducibility | |
with calculateDuration("Randomizing seed"): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
image_generator = generate_image(prompt, steps, seed, cfg_scale, width, height, lora_scale, progress) | |
# Consume the generator to get the final image | |
final_image = None | |
step_counter = 0 | |
final_image = None | |
for image in image_generator: | |
step_counter+=1 | |
final_image = image | |
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>' | |
yield image, seed, gr.update(value=progress_bar, visible=True), json.dumps({"status": "processing"}) | |
if upload_to_r2: | |
url = upload_image_to_r2(final_image, account_id, access_key, secret_key, bucket) | |
result = {"status": "success", "url": url} | |
else: | |
result = {"status": "success", "message": "Image generated but not uploaded"} | |
yield final_image, seed, gr.update(value=progress_bar, visible=False), json.dumps(result) | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("Flux with lora") | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Text(label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False) | |
lora_repo = gr.Text( label="Repo", max_lines=1, placeholder="Enter a lora repo", visible=True) | |
lora_name = gr.Text( label="Weights", max_lines=1, placeholder="Enter a lora weights",visible=True) | |
run_button = gr.Button("Run", scale=0) | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(): | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) | |
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) | |
with gr.Row(): | |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5) | |
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) | |
upload_to_r2 = gr.Checkbox(label="Upload to R2", value=False) | |
account_id = gr.Textbox(label="Account Id", placeholder="Enter R2 account id") | |
access_key = gr.Textbox(label="Access Key", placeholder="Enter R2 access key here") | |
secret_key = gr.Textbox(label="Secret Key", placeholder="Enter R2 secret key here") | |
bucket = gr.Textbox(label="Bucket Name", placeholder="Enter R2 bucket name here") | |
with gr.Column(): | |
progress_bar = gr.Markdown(elem_id="progress",visible=False) | |
result = gr.Image(label="Result", show_label=False) | |
json_text = gr.Text() | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn = run_lora, | |
inputs = [prompt, cfg_scale, steps, lora_repo, lora_name, randomize_seed, seed, width, height, lora_scale, upload_to_r2, account_id, access_key, secret_key, bucket], | |
outputs=[result, seed, progress_bar, json_text] | |
) | |
demo.queue().launch() |